Nikta Amiri, Aastha Shah, Amit Kumar Bhayadia, Chia-Chen Yu, M. Amin Karami, Canan Dagdeviren
{"title":"Design Approaches and Electromechanical Modeling of Conformable Piezoelectric-Based Ultrasound Systems (Adv. Sensor Res. 10/2024)","authors":"Nikta Amiri, Aastha Shah, Amit Kumar Bhayadia, Chia-Chen Yu, M. Amin Karami, Canan Dagdeviren","doi":"10.1002/adsr.202470028","DOIUrl":"https://doi.org/10.1002/adsr.202470028","url":null,"abstract":"<p><b>Piezoelectric-Based Ultrasound Systems</b></p><p>The cover image of article 2300175 by Canan Dagdeviren and co-workers depicts a 2-dimensional array of bulk piezoelectric discs embedded in a soft, flexible polymer substrate. The electromechanical surface deformation of the discs (top two) and polymer encapsulation (bottom two) is shown in the blown view of the discs, as predicted by Multiphysics COMSOL models. The modelling and experimental pipeline presented in this work provides a framework for rapid design and characterization of wearable ultrasound systems.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202470028","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kang Wang, Junhui Zhang, Heng Li, Jingzhi Wu, Qiwu Wan, Taiju Chen, Wenjing Liu, Hai Peng, Hong Zhang, Yang Luo
{"title":"Smart Hydrogel Sensors for Health Monitoring and Early Warning (Adv. Sensor Res. 9/2024)","authors":"Kang Wang, Junhui Zhang, Heng Li, Jingzhi Wu, Qiwu Wan, Taiju Chen, Wenjing Liu, Hai Peng, Hong Zhang, Yang Luo","doi":"10.1002/adsr.202470026","DOIUrl":"https://doi.org/10.1002/adsr.202470026","url":null,"abstract":"<p><b>Smart Monitoring Hydrogel Sensors</b></p><p>In article 2400003, Hong Zhang, Yang Luo, and co-workers report advancements in smart hydrogel sensors for health monitoring and early warning. Leveraging the biocompatible properties of hydrogels, these sensors facilitate continuous, precise monitoring of various physiological parameters. The review highlights the mechanisms of these sensors, their benefits for medical diagnostics, and directions for future research. It also explores their potential in various medical scenarios, such as disease monitoring and management, underscoring the need for further clinical validation.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202470026","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Carbon-Based Biosensor in Point of Care Setting","authors":"Jiaqi Jin, Jiuchuan Guo, Jinhong Guo, Diangeng Li","doi":"10.1002/adsr.202400037","DOIUrl":"https://doi.org/10.1002/adsr.202400037","url":null,"abstract":"<p>In medical diagnosis, detecting disease biomarkers at ultra-low concentrations is vital. Point-of-care (POC) diagnostics require rapid detection, live monitoring, high sensitivity, low detection threshold, and cost-effectiveness. Carbon-based nanomaterials (CBNs) are promising due to their large surface-to-volume ratio, conductivity, biocompatibility, and stability, making them ideal for biosensors. Recent advancements in CBN applications, including biosensing, drug delivery, and cancer therapy, highlight their potential in enhancing detection sensitivity and specificity. Electrochemical sensors and biosensor platforms using carbon nanocomposites are pivotal in diagnostics. This review explores the current state and future challenges of CBN integration in POC settings, envisioning a transformative impact on healthcare diagnostics and therapeutics.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400037","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142402668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrated Microwave Photonic Sensors Based on Microresonators (Adv. Sensor Res. 8/2024)","authors":"Xiaoyi Tian, Liwei Li, Linh Nguyen, Xiaoke Yi","doi":"10.1002/adsr.202470025","DOIUrl":"https://doi.org/10.1002/adsr.202470025","url":null,"abstract":"<p><b>Integrated Microwave Photonic Sensors</b></p><p>Sensors stand as pivotal cornerstones of technologies. In article 2300145, Xiaoke Yi and co-workers demonstrate integrated microwave photonic sensors using microresonators for ultra-sensitive, high-resolution, and rapid detection. These compact sensors, enhanced through integration techniques and artificial intelligence, offer great potential across various applications, representing a significant advancement in modern sensing technologies.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202470025","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of Kirigami-Patterned Stretchable Tactile Sensor Array with Soft Hinges for Highly Sensitive Force Detection (Adv. Sensor Res. 8/2024)","authors":"Chenhao Mao, Jie Jin, Deqing Mei, Yancheng Wang","doi":"10.1002/adsr.202470023","DOIUrl":"https://doi.org/10.1002/adsr.202470023","url":null,"abstract":"<p><b>Deformation-Insensitivity</b></p><p>Flexible sensor array using kirigami structural and soft-hinge design enables deformation-insensitive pressure detection. The sensitivity of sensor is enhanced by the modification with micropillars on conductive rubber. Characterization tests verify the almost negligible effects to sensor caused by 40% stretching and 180° bending interferences. The proposed sensor array is capable of functioning on the deformable surfaces with stable detection signals. More details can be found in article 2400012 by Yancheng Wang and co-workers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202470023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Flexible Tribo-Enhanced Piezoelectric Nanogenerator Based on Aluminium Ferrite Electrospun Hybrid Nanofibers for Energy Harvesting and Patient Rehabilitation Application","authors":"Nishat Kumar Das, Sushmee Badhulika","doi":"10.1002/adsr.202400023","DOIUrl":"https://doi.org/10.1002/adsr.202400023","url":null,"abstract":"<p>Mechanical energy harvesters have recently emerged as promising options for self-powering sensors and small electronic devices. In this work, aluminum ferrite (AlFeO<sub>3</sub>)/PVDF hybrid perovskite electrospun nanofiber-based tribo-enhanced piezoelectric nanogenerators (TPENGs) are developed for energy harvesting. The as-fabricated TPENG achieves an average voltage output of 52.3 V and an average current output of 1.23 µA. Additionally, the power density of the TPENG is calculated to be 0.085 W.m<sup>−2</sup> at an 80 MΩ external resistance load. A 3D-printed device is fabricated, containing nylon fabric (tribo-positive) as a rotor attached to printed fins, while six (AlFeO<sub>3</sub>)/PVDF hybrid perovskite electrospun nanofiber piezoelectric nanogenerators (PENGs) wrapped with Kapton tape (tribo-negative) serve as the stator. The three printed fins of the device are moved by a string-based pulley, generating an open circuit voltage of 200 V and a short circuit current of 4.5 µA. The as-fabricated 3D-printed device with TPENGs is used to power small electronics (e.g., LEDs and watch) and an exercise setup, allowing patients to generate power by pulling the attached string, thereby estimating the level of impairment. Integrating energy harvesting into rehabilitation motivates patients to move impaired body parts, enhancing TPENG's application in healthcare as a practical and engaging tool for patient rehabilitation.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Songlin Yang, Fernanda Gabrigna Berto, John Denstedt, Howyn Tang, Jin Zhang
{"title":"Point-of-Care Urinary Tract Infection (UTI) Diagnosis Enhanced by Nanostructured Biosensors: Review Paper","authors":"Songlin Yang, Fernanda Gabrigna Berto, John Denstedt, Howyn Tang, Jin Zhang","doi":"10.1002/adsr.202400051","DOIUrl":"10.1002/adsr.202400051","url":null,"abstract":"<p>Urinary tract infections (UTIs) are the most common nosocomial infection in North America leading to over $12 billion in annual health care costs. UTIs can significantly reduce the quality of life and, in severe cases, result in sepsis and mortality. According to Public Health Ontario, over 80% of long-term care home (LTCH) residents with asymptomatic bacteriuria are treated with antibiotics, however, less than 50% of the antibiotic treatments for UTIs show clinical benefit. Current confirmatory processes for UTIs are primarily dependent on the completion of urine cultures which can result in a delay of more than 24 h. Therefore, there is a need to develop new efficient diagnostic methods to provide timely test results and prevent multidrug resistance. Emerging nanomaterials with special physical and chemical properties have demonstrated great potential in rapid detection of UTI-associated bacteria. This review paper provides a thorough analysis of current diagnostic tools for UTIs. Emerging nanostructured biosensors are reviewed to elucidate the most recent progress in the detection of uropathogens. It is believed that advanced biosensors integrated with nanotechnology will contribute to the timely diagnosis of UTIs and improve the accuracy of the results, which will lead to better treatment of this prevalent clinical condition.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400051","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141828808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}