Rakesh Kumar Rajaboina, Uday Kumar Khanapuram, Anu Kulandaivel
{"title":"2D Layered Materials Based Triboelectric Self-Powered Sensors","authors":"Rakesh Kumar Rajaboina, Uday Kumar Khanapuram, Anu Kulandaivel","doi":"10.1002/adsr.202400045","DOIUrl":"https://doi.org/10.1002/adsr.202400045","url":null,"abstract":"<p>Sensors play a crucial role in enhancing the quality of life, ensuring safety, and facilitating technological advancements. Over the past decade, 2D layered materials have been added as new sensing element in addition to existing materials such as metal oxides, semiconductors, metals, and polymers. 2D Layered materials are typically characterized by their single or few-layer thickness and offer a high surface-to-volume ratio, exceptional mechanical strength, and unique electronic attributes. These properties make them ideal candidates for a variety of sensing applications. This review article focused on utilizing 2D layered materials in triboelectric nanogenerators (TENGs) for different sensing applications. The best part of TENG-based sensing is that it is self-powered, so no external power supply is required. The initial part of the review focused on the importance of the 2D layered materials and their innovative integration methods in TENGs. Further, this review discusses various sensing applications, including humidity, touch, force, temperature, and gas sensing, highlighting the impact of 2D layered materials in enhancing the sensitivity and selectivity of TENG sensors. The last part of the review discusses the challenges and prospects of TENG-based self-powered sensors.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400045","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Detection Strategies for Volatile Fragrance Released from Agricultural Products: Progress and Prospects","authors":"Mengqing Wang, Yong Zhou, Xian Li","doi":"10.1002/adsr.202400044","DOIUrl":"https://doi.org/10.1002/adsr.202400044","url":null,"abstract":"<p>The volatile aroma released from agricultural products is closely related to the health status and quality of their growth, thus endowing the related detection with great significance. For example, the dynamic variation of the volatile chemical composition of a banana during the growth process can reflect its ripeness. Also important for quality monitoring and storage is to precisely and swiftly identify volatile compounds produced by mildew in rice and wheat. In this endeavor, the current detection technologies such as gas chromatography-mass spectrometry method (GC-MS) cannot meet the pressing needs of smart agriculture in terms of real-time monitoring, cost-effectiveness, sensitivity, and detection speed, thereby necessitating alternative strategies to simultaneously satisfy these requirements. Aiming to provide an overall development trend in this field, this paper summarizes the existing detection technologies including GC-MS, E-nose, and sensory analysis with their respective shortcomings and challenges, and then proposes the application prospects. This work can effectively enrich the reliable monitoring methods for volatile agricultural fragrance while promoting the long-run development of smart agriculture.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400044","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hyo Jeong Seo, Jun Young Kim, Jun-Yeong Yang, Chaewon Mun, Seunghun Lee, Eun Hye Koh, Vo Thi Nhat Linh, Mijeong Kang, Ho Sang Jung
{"title":"3D Spiky Needle-Clustered Ag@Au Plasmonic Nanoarchitecture for Highly Sensitive and Machine Learning-Assisted Detection of Multiple Hazardous Molecules","authors":"Hyo Jeong Seo, Jun Young Kim, Jun-Yeong Yang, Chaewon Mun, Seunghun Lee, Eun Hye Koh, Vo Thi Nhat Linh, Mijeong Kang, Ho Sang Jung","doi":"10.1002/adsr.202400030","DOIUrl":"10.1002/adsr.202400030","url":null,"abstract":"<p>To develop a field applicable hazardous molecular detection system, highly sensitive and multiplex detection capability is required for practical utilization. Here, a paper-based 3D spiky needle-clustered gold grown on silver (Ag@Au) plasmonic nanoarchitecture (3D-SNCP) is fabricated through whole solution process. The developed substrate is investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) to find out morphological development mechanism. Also, finite-domain time difference (FDTD) simulation is conducted for the observation of electromagnetic field (E-field) distribution. After surface-enhanced Raman scattering (SERS) characterization, the 3D-SNCP is utilized for ultra-sensitive and multiplex hazardous molecular detection, such as bipyridine pesticides including paraquat (PQ), diquat (DQ), and difenzoquat (DIF). Then, each of pesticide molecular Raman signals are trained by a machine learning technique of multinomial logistic regression (MLR), followed by multiplex classificationf of blank, PQ, DQ, DIF, and four mixture types of each pesticide, spiked in real agricultural matrix. The developed 3D-SNCP substrate combined with the machine learning method successfully verifies the multiple pesticides and it is expected to be applied for various hazardous molecular detection in much complicated matrix environments.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400030","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141350130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Defect Engineering and Piezoelectrical Polarization Synergistically Assisted for Photoelectrochemical Sensing Based on CdS Nanowires","authors":"Yanhu Wang, Mengchun Yang, Shenguang Ge, Jinghua Yu","doi":"10.1002/adsr.202400019","DOIUrl":"10.1002/adsr.202400019","url":null,"abstract":"<p>Developing progressive photoelectrochemical (PEC) techniques holds great potential for advancing analytical sensitivity in clinical. However, the low transport and separation of charge carrier efficiency and deficient active sites block efficient and durable PEC analytical performance features. And herein a piezo-assisted PEC sensing platform for glutathione (GSH) detection are successfully prepared based on S vacancies rich CdS (S<sub>v</sub>-CdS) nanowires. The collaboration of piezoelectric polarization and S vacancies engineering contributed to the boosted PEC performance by accelerating the spatial separation of photogenerated charges and providing abundant active sites. Moreover, the charge transfer efficiency further promoted with the introduction of GSH acted a hole scavenge that effectively suppresses the electron-hole recombination, giving rise to an amplified photocurrent. As a demonstration, the proposed method presents an outstanding analytical performance toward GSH. Consequently, this work provides an inspirable and convenient route for designing high-efficiency photoelectrode in PEC sensing in virtue of judicious structural, and defect engineering, and the exploring of an external-field-coupling-enhanced PEC platform.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141345164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria De Luca, Adriano Acunzo, Daniele Marra, Margherita Borriello, Diego Ingrosso, Raffaele Velotta, Vincenzo Iannotti, Bartolomeo Della Ventura
{"title":"Beyond the Passive Diffusion: Core@Satellite Magneto-Plasmonic Particles for Rapid and Sensitive Colorimetric Immunosensor Response","authors":"Maria De Luca, Adriano Acunzo, Daniele Marra, Margherita Borriello, Diego Ingrosso, Raffaele Velotta, Vincenzo Iannotti, Bartolomeo Della Ventura","doi":"10.1002/adsr.202400006","DOIUrl":"10.1002/adsr.202400006","url":null,"abstract":"<p>Magneto-plasmonic particles, comprising gold and iron oxide, exhibit substantial potential for biosensing applications due to their distinct properties. Gold nanoparticles (AuNPs) provide plasmonic features, while iron oxide composites, responsive to an external magnetic field, significantly reduce detection time compared to passive diffusion. This study explores core@satellite magneto-plasmonic particles (CSMPs), featuring magnetic nanoparticle clusters and numerous satellite-like AuNPs, to amplify the optical response on a nanostructured gold surface. Using a sandwich scheme, target analytes are detected as hybrid nanoparticles bind to the pre-immobilized target on the AuNPs surface, inducing changes in the immunosensor's extinction spectrum. Application of an external magnetic field notably enhances biosensor response and sensitivity, reducing assay time from hours to minutes. Leveraging the properties of CSMPs, the immunosensor detects specific immune protein at low concentrations within minutes. CSMPs hold considerable promise for precise and sensitive analyte detection, offering potential applications in rapid testing and mass screening.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141350103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Behrad Koohbor, Wei Xue, Kazi Z. Uddin, George Youssef, Daniel Nerbetski, Bradley Steiger, Joseph Kenney, Dana Yarem
{"title":"Fabrication and Characterization of Electrically Conductive 3D Printable TPU/MWCNT Filaments for Strain Sensing in Large Deformation Conditions (Adv. Sensor Res. 6/2024)","authors":"Behrad Koohbor, Wei Xue, Kazi Z. Uddin, George Youssef, Daniel Nerbetski, Bradley Steiger, Joseph Kenney, Dana Yarem","doi":"10.1002/adsr.202470018","DOIUrl":"https://doi.org/10.1002/adsr.202470018","url":null,"abstract":"<p><b>3D-Printable Sensors</b></p><p>This study investigates the development of 3D printable thermoplastic polyurethane filaments incorporating multi-walled carbon nanotubes (MWCNT) for enhanced strain-sensing capabilities. Piezoresistive structures are fabricated and tested to demonstrate the potential applicability of the custom filaments. More details can be found in article number 2300198 by Behrad Koohbor and co-workers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202470018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Siyang Ding, Oana Sanislav, Daniel Missailidis, Claire Yvonne Allan, Tze Cin Owyong, Ming-Yu Wu, Sijie Chen, Paul Robert Fisher, Sarah Jane Annesley, Yuning Hong
{"title":"A Novel Fluorogenic Probe Reveals Lipid Droplet Dynamics in ME/CFS Fibroblasts (Adv. Sensor Res. 6/2024)","authors":"Siyang Ding, Oana Sanislav, Daniel Missailidis, Claire Yvonne Allan, Tze Cin Owyong, Ming-Yu Wu, Sijie Chen, Paul Robert Fisher, Sarah Jane Annesley, Yuning Hong","doi":"10.1002/adsr.202470020","DOIUrl":"https://doi.org/10.1002/adsr.202470020","url":null,"abstract":"<p><b>Lipid Droplet Imaging</b></p><p>In article 2300178, Yuning Hong and co-workers present a newly developed imaging agent for cellular lipid droplets. This high-performance fluorescent dye is capable to quantify lipid droplet dynamics in live cells and reveals larger but fewer lipid droplets in fibroblasts from ME/CFS patients compared to the healthy controls, suggesting their potential application in disease study and diagnosis.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202470020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanofabrication and Sensing Technology: from the Interface-Mediated Mechanism Point-of-View","authors":"Pubali Kar, Elmer Ismael Guerra, Wei-Ssu Liao","doi":"10.1002/adsr.202400031","DOIUrl":"10.1002/adsr.202400031","url":null,"abstract":"<p>In recent years, the field of sensing technology has experienced notable advancements, where sensing devices have emerged as pivotal tools in enhancing operational efficiency, cutting costs, and bolstering security across diverse sectors. In this context, the preparation of nanoscale materials and structures, including colloidal particle synthesis and lithographic structure fabrication will be discussed. The significance of managing the interface environment in sensor designs, with nanofabrication advancements enabling the development of innovative sensing devices, is highlighted. Control over the interface environment is argued not only dictates the capability of sensor designs but also opens avenues for next-generation sensor fabrication and integration. By focusing on the interface-mediated mechanism, this approach offers a comprehensive roadmap of this research area, its challenges and potential solutions, and prospective opportunities.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400031","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141383197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rainer Bäuerle, Pariya Nazari, Johannes Zimmermann, Christian Melzer, Gerardo Hernandez‐Sosa, Wolfgang Kowalsky
{"title":"Fully Printed PTC Based Heat Transfer Sensor Array as Liquid Level Sensor","authors":"Rainer Bäuerle, Pariya Nazari, Johannes Zimmermann, Christian Melzer, Gerardo Hernandez‐Sosa, Wolfgang Kowalsky","doi":"10.1002/adsr.202400060","DOIUrl":"https://doi.org/10.1002/adsr.202400060","url":null,"abstract":"Liquid levels must be monitored in almost any process involving liquids. Most level sensors are mounted inside the vessel containing the liquid. Herein, a fully screen‐printed level sensor is demonstrated for external use. It consists of a vertical array of 16 pixels, each comprising a voltage divider of a positive temperature coefficient (PTC) element and a shunt resistor. The self‐regulating PTC elements are heated with constant voltage. Heat flow out of the PTCs dictate their resistances and enables inference about their thermal surrounding. Water in a polypropylene container changes voltage levels by (33 ± 2) % compared to air. Applications with a glass container and household oil instead of water are also successfully tested. Both liquids yield a distinctive difference in signal and the sensor determines the height of the oil/water interface as well as the surfaces of the liquid. To further demonstrate the capabilities of the sensor, segregation of a water‐oil mixture, slowed by a mixing agent, is observed in real time. This work offers an adaptable and simple alternative for external level sensing.","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141272502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}