Thando Juqu, Shane Clayton Willenberg, Keagan Pokpas, Natasha Ross
{"title":"Advances in paper-based battery research for biodegradable energy storage","authors":"Thando Juqu, Shane Clayton Willenberg, Keagan Pokpas, Natasha Ross","doi":"10.1016/j.asems.2022.100037","DOIUrl":"10.1016/j.asems.2022.100037","url":null,"abstract":"<div><p>The increased demand for energy due to industrialisation and a steadily growing population has placed greater strain on the development of eco-friendly energy storage devices in recent years. Current methods with high efficiency are limited by high costs and waste. As a result, greater importance has been placed on the development of low-cost, lightweight, flexible, and biodegradable energy storage systems developed from paper and paper-like substrates. This study reviews recent advances in paper-based battery and supercapacitor research, with a focus on materials used to improve their electrochemical performance. Special mention is made of energy-storage configurations ranging from metal-air and metal-ion batteries to supercapacitors. Furthermore, methods of fabrication, functional materials, and efficiency are reviewed to offer prospects for future research into the field of paper-based Na-ion batteries. The review provides an updated discussion of recent research conducted in the field of paper-based energy systems published over the last five years and highlights the challenges for their commercial integration prospects.</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"1 4","pages":"Article 100037"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X22000371/pdfft?md5=84e796446d4ba55aa15ada1fbe10ab9b&pid=1-s2.0-S2773045X22000371-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79332796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quan Zhou , Jens Oluf Jensen , Lars Nilausen Cleemann , Qing-Feng Li , Yang Hu
{"title":"Tailoring the particle sizes of Pt5Ce alloy nanoparticles for the oxygen reduction reaction","authors":"Quan Zhou , Jens Oluf Jensen , Lars Nilausen Cleemann , Qing-Feng Li , Yang Hu","doi":"10.1016/j.asems.2022.100025","DOIUrl":"10.1016/j.asems.2022.100025","url":null,"abstract":"<div><p>Pt-rare earth (RE) alloys are among the most efficient catalytic materials for the oxygen reduction reaction in acidic media, which, however, are very difficult to synthesize. Previous theoretical and experimental studies indicated that the optimum particle structure is the Pt<sub>5</sub>RE intermetallic phases with the optimum sizes of around 6–9 nm. In this work, using a synthesis method recently developed by our group, we attempt to synthesize such alloy catalysts. Firstly, we explored the synthesis conditions to obtain pure-phase Pt<sub>5</sub>Ce. Secondly, we attempted to control the size of the alloy particles, which turned out to be the main challenge of this study. To that end, we have investigated the growth pattern of the particles during the synthesis process and used two synthesis parameters, the metal loading and the surface area of the carbon support, to tailor the particle sizes. The sizes and oxygen reduction reaction (ORR) performance of the best Pt<sub>5</sub>Ce/C sample obtained so far are discussed.</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"1 3","pages":"Article 100025"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X22000255/pdfft?md5=5a1161ea052c8f9cd923a4f51b9c4ec3&pid=1-s2.0-S2773045X22000255-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89732974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tian-Tian Wang , Xiao-Feng Huang , Hui Huang , Pei Luo , Lin-Sen Qing
{"title":"Nanomaterial-based optical- and electrochemical-biosensors for urine glucose detection: A comprehensive review","authors":"Tian-Tian Wang , Xiao-Feng Huang , Hui Huang , Pei Luo , Lin-Sen Qing","doi":"10.1016/j.asems.2022.100016","DOIUrl":"10.1016/j.asems.2022.100016","url":null,"abstract":"<div><p>Urine glucose detection is an important diagnostic tool for screening and early diagnosis of diabetes mellitus. Detection of urine glucose has many advantages over blood glucose, such as non-invasive, easy-to-detect, simple sampling and being well accepted by patients. Therefore, it is commonly used to monitor diabetes progression, assist in therapeutic intervention as well as in point-of-care testing (POCT). In recent years, with the development of material science, electrochemistry and miniaturization technology, novel applications of natural enzymes, nanozymes as well as nanomaterials, such as metal (Au, Pt, Ni, Co, etc.), alloy, grapheme, in the analysis of urine glucose level have been increasing sharply. In particular, different types of nanozymes-based biosensors, inspired by natural enzymes, have been developed with improved characteristics of being low-cost, stable, and mass-produced. On the other hand, making use of portable devices, such as smartphones and microfluidic paper-based analytical devices, has facilitated on site accurate urine glucose monitoring in real time. All these rapid advancements in nanotechnologies and devices have contributed greatly to the development of cost effective, highly sensitive, user friendly urine glucose biosensors. This review summarizes the most recent improvements in two major types of urine glucose biosensors: the optical- and electrochemical-biosensors. We also discuss the limitations, challenges and perspectives of these biosensors. Finally, we propose future research directions, development trends and potential clinical applications of nanomaterial-based biosensors developed for urine glucose detection.</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"1 3","pages":"Article 100016"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X22000164/pdfft?md5=b1c20bbeeeb4cbfbb2cf1df5c53cce2f&pid=1-s2.0-S2773045X22000164-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76893485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Imaging electrochemiluminescence layer to dissect concentration-dependent light intensity for accurate quantitative analysis","authors":"Wen-Xuan Fu , Ping Zhou , Wei-Liang Guo , Bin Su","doi":"10.1016/j.asems.2022.100028","DOIUrl":"10.1016/j.asems.2022.100028","url":null,"abstract":"<div><p>As one of most advanced transduction techniques, electrochemiluminescence (ECL), such as that generated by tris(2,2′-bipyridyl)ruthenium (Ru(bpy)<sub>3</sub><sup>2+</sup>), has been extensively used in chemical sensing and analysis, but the reaction mechanism has not been fully resolved. Aiming at gaining insightful mechanistic information on the coreactant system involving (Ru(bpy)<sub>3</sub><sup>2+</sup>) and tri-<em>n</em>-propylamine (TPrA), herein we investigate the variation of thickness of ECL layer (TEL) with the concentration ratio of (Ru(bpy)<sub>3</sub><sup>2+</sup>) to TPrA (<em>c</em><sub>Ru</sub>/<em>c</em><sub>TPrA</sub>) by ECL microscopy. Using carbon fiber as the working electrode, TEL was observed to grow with the increase of <em>c</em><sub>Ru</sub>/<em>c</em><sub>TPrA</sub> remarkably. In conjunction with finite element simulations, the extension of ECL layer was rationalized to be associated with the incremental contribution of so-called “catalytic route”. This route offers an additional channel of generating remote light emission in solution, apart from surface-confined emission produced by the “oxidative-reduction route”. Given the quantitative analysis of coreactant-type analytes is often based on the calibration curve, namely a graph generated by plotting the measured light intensity of a series of standard solutions against their concentrations, the contribution of “catalytic route” particularly at a low concentration of analyte (equivalent to a relatively large <em>c</em><sub>Ru</sub>/<em>c</em><sub>TPrA</sub>) is favorable to the analytical sensitivity. Moreover, the presence and absence of this route will result in a nonlinear and linear calibration curve, respectively, for example in the detection of TPrA and pyruvate. The results highlight the microwire-based imaging approach can provide insightful mechanistic information and help unveil the concentration dependence of measured ECL intensity for precise quantitative analysis.</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"1 3","pages":"Article 100028"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X22000280/pdfft?md5=26110107c822b0b6ca6a6c39b8c4d952&pid=1-s2.0-S2773045X22000280-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73763139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xi-Qing Wang , Qin Chen , Ya-Jiao Zhou , Hong-Mei Li , Jun-Wei Fu , Min Liu
{"title":"Cu-based bimetallic catalysts for CO2 reduction reaction","authors":"Xi-Qing Wang , Qin Chen , Ya-Jiao Zhou , Hong-Mei Li , Jun-Wei Fu , Min Liu","doi":"10.1016/j.asems.2022.100023","DOIUrl":"https://doi.org/10.1016/j.asems.2022.100023","url":null,"abstract":"<div><p>Electrocatalytic CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) is one of the effective means to realize CO<sub>2</sub> resource utilization. Among the high-efficiency metal-based catalysts, Cu is a star material profiting from its ability for CO<sub>2</sub> reduction into valuable hydrocarbon products. However, due to the difficulty in activating CO<sub>2</sub> and regulating intermediate adsorption/desorption properties, the CO<sub>2</sub>RR activity and selectivity of Cu-based catalysts still cannot meet the requirements of industrial applications. The design of Cu-based bimetallic catalysts is a potential strategy because the introduction of the second metal can well promote the activation of CO<sub>2</sub> and break the linear scaling relationship in intermediate adsorption/desorption. In this review, the synergistic enhancements of Cu-based bimetals on CO<sub>2</sub> activation and intermediate adsorption/desorption are analyzed in detail, including the advantages caused by the morphology of Cu-based bimetallic catalysts, the local electric field effect induced by the special nanoneedle structure, the interface engineering (strain effect, atomic arrangement, interface regulation), and other particular effects (electronic effect and tandem effect). Finally, the challenges and perspectives on the development of Cu-based bimetallic catalysts for CO<sub>2</sub> reduction are proposed.</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"1 3","pages":"Article 100023"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X22000231/pdfft?md5=75878c8dd1fe8db62b59657cb9c82a4e&pid=1-s2.0-S2773045X22000231-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"137439457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liang-Liang Feng , Dong-Ming Li , Qian-Qian Liu , Chang-Le Fu , Hong-Yan Yin , Li Feng , Yu-Hang Li , Hui Chen , Xiao-Xin Zou
{"title":"Ultrasmall VN/Co heterostructure with optimized N active sites anchored in N-doped graphitic nanocarbons for boosting hydrogen evolution","authors":"Liang-Liang Feng , Dong-Ming Li , Qian-Qian Liu , Chang-Le Fu , Hong-Yan Yin , Li Feng , Yu-Hang Li , Hui Chen , Xiao-Xin Zou","doi":"10.1016/j.asems.2022.100027","DOIUrl":"https://doi.org/10.1016/j.asems.2022.100027","url":null,"abstract":"<div><p>Interface engineering is deemed as an effective approach to optimize the electronic structure of catalytically active sites in electrocatalysts for boosted hydrogen evolution reaction (HER). Herein, a novel ultrasmall VN/Co heterostructure anchored in N-doped graphitized nanocarbons (VN/Co@GNC) is successfully synthesized by a simple calcination protocol. Benefiting from the abundant reactive sites on the interface of ultrasmall heterostructure, enhanced N active sites of VN coupled with Co nanoparticles, as well as excellent conductivity of N-doped graphitized nanocarbons as the scaffold, the resulting VN/Co@GNC material exhibits outstanding electrocatalytic HER performance, delivering the current density of 10 mA/cm<sup>2</sup> at a quite low overpotential of 155 mV without <em>iR</em>-compensation, and retaining the catalytic durability for at least 565 h (∼23.5 days) in 1 M KOH solution. The superior catalytic activity and ultrastability of VN/Co@GNC electrocatalyst lay a solid foundation for its commercial applications toward the hydrogen fuel production.</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"1 3","pages":"Article 100027"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X22000279/pdfft?md5=488bd9f55c8265c4b0e2c14b52ebedd9&pid=1-s2.0-S2773045X22000279-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"137439458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vijay Venkatesh, Travis Hery, Vishnu Baba Sundaresan
{"title":"Transmembrane transport characterization across ionic redox transistors using surface-tracked scanning ion conductance microscopy","authors":"Vijay Venkatesh, Travis Hery, Vishnu Baba Sundaresan","doi":"10.1016/j.asems.2022.100026","DOIUrl":"10.1016/j.asems.2022.100026","url":null,"abstract":"<div><p>A fundamental understanding of ion transport at the nanoscale is critical to the development of efficient chemical separation membranes, catalysts, ionic/bio-inspired materials, and its scale up into multi-functional ionic devices. Electrochemical imaging using scanning probe microscopy hardware has provided a method to visualize and understand processes that occur at the surface of ionic active materials. The suite of scanning probe microscopy techniques developed over the last few years are limited to imaging surface-level phenomena and have not been applied to investigate transmembrane properties of synthetic and natural membranes with high spatial and temporal resolution. In this article, we demonstrate the application our recently developed ‘surface-tracked scanning ion conductance microscopy’ technique to characterize voltage-regulated ion transport in an ionic redox transistor. The ionic redox transistor exhibits controlled transmembrane ion transport as a function of its electrochemical redox state. The technique presented in this article uses shear force measured between the nanopipette and ionic substrate to image topography of the porous substrate and simultaneously characterize topography-correlated transmembrane transport through the ionic redox transistor. The transmembrane conductance measured across an array of pores within the ionic redox transistor varies from 0.004 μS/cm (OFF state) to 0.015 μS/cm (ON state). We anticipate that the spatial correlation of transmembrane ion transport in the ionic redox transistor would result in a scale up into smart membrane separators for energy storage, neuromorphic circuits, and desalination membranes.</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"1 3","pages":"Article 100026"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X22000267/pdfft?md5=8fcda49692b4caf258b973851e50ccf5&pid=1-s2.0-S2773045X22000267-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91045674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li Zuo , Mohammad Akter Hossain , Bishal Pokhrel , Wei-Shun Chang , Hao Shen
{"title":"Catalysis driven by biohybrid nanozyme","authors":"Li Zuo , Mohammad Akter Hossain , Bishal Pokhrel , Wei-Shun Chang , Hao Shen","doi":"10.1016/j.asems.2022.100024","DOIUrl":"10.1016/j.asems.2022.100024","url":null,"abstract":"<div><p>Nanozymes, a class of nanomaterials that exhibit enzyme-like characteristics in catalysis, have been booming over decades. They feature unique properties, such as low cost, high chemical stability, easy storage, and highly tunable reactivity. Nanozymes with biomolecule modifications received the most attention because of their high biocompatibility and better natural enzyme-mimicking. With their unique physicochemical properties, these biomolecule nanohybrids have been used in a variety of applications. Hence, we highlight the current progress for “biohybrid nanozymes” in this review. The synthesis, composition, and catalytic performances of different biohybrid nanozymes are discussed. We expect that biohybrid nanozymes will attract broad interest in fundamental research and practical applications.</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"1 3","pages":"Article 100024"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X22000243/pdfft?md5=1c465c71270bc39928f846b6fdc04ec2&pid=1-s2.0-S2773045X22000243-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90281673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Single particle spectroscopy and single particle analysis","authors":"Yun-Peng Ma, Jun Zhou, Cheng-Zhi Huang","doi":"10.1016/j.asems.2022.100017","DOIUrl":"10.1016/j.asems.2022.100017","url":null,"abstract":"","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"1 3","pages":"Article 100017"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X22000176/pdfft?md5=7df57b30367f318f8ed9055bb1d40d1d&pid=1-s2.0-S2773045X22000176-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89684604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuxin Xie , Xiaogang Yu , Zhaohang Jin , Qingbin Liu , Shizhen Liu , Yun Zhao , Zhonghua Xiang
{"title":"Dual-template strategy synthesis of hierarchically porous electrocatalysts for oxygen reduction reaction","authors":"Yuxin Xie , Xiaogang Yu , Zhaohang Jin , Qingbin Liu , Shizhen Liu , Yun Zhao , Zhonghua Xiang","doi":"10.1016/j.asems.2022.100006","DOIUrl":"10.1016/j.asems.2022.100006","url":null,"abstract":"<div><p>Metal organic frameworks derived M-N-C catalysts have been discovered as promising alternatives to Pt-based catalysts in oxygen reduction reaction (ORR). However, the dominated micropores in their porous structures strongly restrain the mass transfer and lead to insufficient utilization of active sites. Here, we proposed a dual-template strategy to improve the catalytic performance of ZIF-8 derived M-N-C catalysts. Both the silica and sodium chloride templates created mesopores, which may intensified the mass transfer. Moreover, the molten sodium chloride connected the individual ZIF-8 crystals form highly graphitized carbon structure which had better stability and conductivity. The as-synthesized (FeCo)HPNC@NaCl catalyst exhibited similar ORR activity to commercial Pt/C under acidic conditions with half-wave potential of 0.808 V. The catalyst expressed high stability with 12 mV decrease of half-wave potential after 5000 cycles and 80% remained activity after 100000 s operation. Moreover, we tested the catalyst in fuel cell for practical application, achieving a high peak power density of 427 mW cm<sup>−2</sup>.</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"1 2","pages":"Article 100006"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X22000061/pdfft?md5=8b0f93a439dfc1430abba3bc542ef858&pid=1-s2.0-S2773045X22000061-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84324840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}