Jia Gao , Rui-Yang Zhao , Yi-Guang Wang , Ruo-Chen Xie , Wei Wang
{"title":"电化学诱导的局部pH变化的快速荧光定位","authors":"Jia Gao , Rui-Yang Zhao , Yi-Guang Wang , Ruo-Chen Xie , Wei Wang","doi":"10.1016/j.asems.2022.100030","DOIUrl":null,"url":null,"abstract":"<div><p>We present a fluorescent microscopic method using an ultra-pH-sensitive polymeric probe to rapidly map within subsecond the pH distribution resulting from oxygen reduction reaction electrocatalysed by an array of platinum nanoparticles. Upon voltammetry of the surface-supported Pt catalysts, fluorescent quenching waves are observed to depend on the electrode potential. The spatiotemporal fluorescent evolution is then confirmed under a constant potential control to be due to the local pH change as a function of diffusing time by an estimation of the proton diffusion coefficient <span><math><mrow><mrow><mo>(</mo><mrow><mi>L</mi><mspace></mspace><mi>α</mi><mspace></mspace><msup><mi>t</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow><mo>)</mo></mrow></mrow></math></span>. On these bases, the fluorescent measurements at short reaction times can provide quantitative information regarding the one and two dimensional pH distributions, which are shown to exhibit the expected shape of a typical diffusion-driven concentration gradient. Such imaging of proton/pH profiles may find important applications such as efficient screening of different micro/nanoscale electrocatalysts.</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"1 4","pages":"Article 100030"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X22000309/pdfft?md5=e71cedcf5f6e88e971b156660069cc7e&pid=1-s2.0-S2773045X22000309-main.pdf","citationCount":"2","resultStr":"{\"title\":\"Rapid fluorescent mapping of electrochemically induced local pH changes\",\"authors\":\"Jia Gao , Rui-Yang Zhao , Yi-Guang Wang , Ruo-Chen Xie , Wei Wang\",\"doi\":\"10.1016/j.asems.2022.100030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a fluorescent microscopic method using an ultra-pH-sensitive polymeric probe to rapidly map within subsecond the pH distribution resulting from oxygen reduction reaction electrocatalysed by an array of platinum nanoparticles. Upon voltammetry of the surface-supported Pt catalysts, fluorescent quenching waves are observed to depend on the electrode potential. The spatiotemporal fluorescent evolution is then confirmed under a constant potential control to be due to the local pH change as a function of diffusing time by an estimation of the proton diffusion coefficient <span><math><mrow><mrow><mo>(</mo><mrow><mi>L</mi><mspace></mspace><mi>α</mi><mspace></mspace><msup><mi>t</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow><mo>)</mo></mrow></mrow></math></span>. On these bases, the fluorescent measurements at short reaction times can provide quantitative information regarding the one and two dimensional pH distributions, which are shown to exhibit the expected shape of a typical diffusion-driven concentration gradient. Such imaging of proton/pH profiles may find important applications such as efficient screening of different micro/nanoscale electrocatalysts.</p></div>\",\"PeriodicalId\":100036,\"journal\":{\"name\":\"Advanced Sensor and Energy Materials\",\"volume\":\"1 4\",\"pages\":\"Article 100030\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2773045X22000309/pdfft?md5=e71cedcf5f6e88e971b156660069cc7e&pid=1-s2.0-S2773045X22000309-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Sensor and Energy Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773045X22000309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor and Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773045X22000309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rapid fluorescent mapping of electrochemically induced local pH changes
We present a fluorescent microscopic method using an ultra-pH-sensitive polymeric probe to rapidly map within subsecond the pH distribution resulting from oxygen reduction reaction electrocatalysed by an array of platinum nanoparticles. Upon voltammetry of the surface-supported Pt catalysts, fluorescent quenching waves are observed to depend on the electrode potential. The spatiotemporal fluorescent evolution is then confirmed under a constant potential control to be due to the local pH change as a function of diffusing time by an estimation of the proton diffusion coefficient . On these bases, the fluorescent measurements at short reaction times can provide quantitative information regarding the one and two dimensional pH distributions, which are shown to exhibit the expected shape of a typical diffusion-driven concentration gradient. Such imaging of proton/pH profiles may find important applications such as efficient screening of different micro/nanoscale electrocatalysts.