铑纳米颗粒锚定在三维金属有机框架-石墨烯混合结构用于甲醇氧化的高性能电催化剂

Hai-Yan He, Xie-Ao Du, Jin-Long Qin, Lin-Lin Hao, Lang Luo, Chen-Yu Ma, Feng-Yi Zhu, Hua-Jie Huang
{"title":"铑纳米颗粒锚定在三维金属有机框架-石墨烯混合结构用于甲醇氧化的高性能电催化剂","authors":"Hai-Yan He,&nbsp;Xie-Ao Du,&nbsp;Jin-Long Qin,&nbsp;Lin-Lin Hao,&nbsp;Lang Luo,&nbsp;Chen-Yu Ma,&nbsp;Feng-Yi Zhu,&nbsp;Hua-Jie Huang","doi":"10.1016/j.asems.2022.100029","DOIUrl":null,"url":null,"abstract":"<div><p>The development of advanced and efficient anode catalysts to accelerate the kinetic rate of methanol oxidation plays an important role in the large-scale commercial application of the direct methanol fuel cells (DMFCs). Herein, we report the design and construction of small-sized rhodium nanocrystals decorated on 3D hybrid aerogels built from graphene and metal-organic framework (Rh/G-ZIF) via a solvothermal co-assembly method. Benefiting from the 3D rigid crosslinked architecture, abundant porous channels, and highly dispersed ultrafine Rh nanoparticles, the optimized Rh/G-ZIF aerogel exhibits a large electrochemically active surface area, high mass and specific activities, and excellent long-term durability toward the methanol electrooxidation, all of which are significantly superior to those of Rh catalysts supported by traditional carbon materials (such as carbon black, carbon nanotube, and graphene).</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"1 4","pages":"Article 100029"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X22000292/pdfft?md5=ce902360d599578d9147f26d2c87f148&pid=1-s2.0-S2773045X22000292-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Rhodium nanoparticles anchored on 3D metal organic framework-graphene hybrid architectures for high-performance electrocatalysts toward methanol oxidation\",\"authors\":\"Hai-Yan He,&nbsp;Xie-Ao Du,&nbsp;Jin-Long Qin,&nbsp;Lin-Lin Hao,&nbsp;Lang Luo,&nbsp;Chen-Yu Ma,&nbsp;Feng-Yi Zhu,&nbsp;Hua-Jie Huang\",\"doi\":\"10.1016/j.asems.2022.100029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of advanced and efficient anode catalysts to accelerate the kinetic rate of methanol oxidation plays an important role in the large-scale commercial application of the direct methanol fuel cells (DMFCs). Herein, we report the design and construction of small-sized rhodium nanocrystals decorated on 3D hybrid aerogels built from graphene and metal-organic framework (Rh/G-ZIF) via a solvothermal co-assembly method. Benefiting from the 3D rigid crosslinked architecture, abundant porous channels, and highly dispersed ultrafine Rh nanoparticles, the optimized Rh/G-ZIF aerogel exhibits a large electrochemically active surface area, high mass and specific activities, and excellent long-term durability toward the methanol electrooxidation, all of which are significantly superior to those of Rh catalysts supported by traditional carbon materials (such as carbon black, carbon nanotube, and graphene).</p></div>\",\"PeriodicalId\":100036,\"journal\":{\"name\":\"Advanced Sensor and Energy Materials\",\"volume\":\"1 4\",\"pages\":\"Article 100029\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2773045X22000292/pdfft?md5=ce902360d599578d9147f26d2c87f148&pid=1-s2.0-S2773045X22000292-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Sensor and Energy Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773045X22000292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor and Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773045X22000292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

开发先进高效的阳极催化剂加快甲醇氧化动力学速率对直接甲醇燃料电池(dmfc)的大规模商业化应用具有重要意义。在此,我们报告了通过溶剂热共组装方法在石墨烯和金属有机骨架(Rh/G-ZIF)构建的3D混合气凝胶上装饰的小尺寸铑纳米晶体的设计和构建。优化后的Rh/G-ZIF气凝胶得益于其三维刚性交联结构、丰富的多孔通道和高度分散的超细Rh纳米颗粒,具有较大的电化学活性表面积、高质量和比活性,以及优异的甲醇电氧化耐久性,这些都明显优于传统碳材料(如炭黑、碳纳米管和石墨烯)负载的Rh催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rhodium nanoparticles anchored on 3D metal organic framework-graphene hybrid architectures for high-performance electrocatalysts toward methanol oxidation

Rhodium nanoparticles anchored on 3D metal organic framework-graphene hybrid architectures for high-performance electrocatalysts toward methanol oxidation

The development of advanced and efficient anode catalysts to accelerate the kinetic rate of methanol oxidation plays an important role in the large-scale commercial application of the direct methanol fuel cells (DMFCs). Herein, we report the design and construction of small-sized rhodium nanocrystals decorated on 3D hybrid aerogels built from graphene and metal-organic framework (Rh/G-ZIF) via a solvothermal co-assembly method. Benefiting from the 3D rigid crosslinked architecture, abundant porous channels, and highly dispersed ultrafine Rh nanoparticles, the optimized Rh/G-ZIF aerogel exhibits a large electrochemically active surface area, high mass and specific activities, and excellent long-term durability toward the methanol electrooxidation, all of which are significantly superior to those of Rh catalysts supported by traditional carbon materials (such as carbon black, carbon nanotube, and graphene).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信