The Royal Society of Chemistry最新文献

筛选
英文 中文
A critical review on Li-ion transport, chemistry and structure of ceramic-polymer composite electrolytes for solid state batteries. 关于固态电池用陶瓷-聚合物复合电解质的锂离子传输、化学和结构的重要综述。
IF 40.4 1区 化学
Chemical Society Reviews Pub Date : 2024-11-18 DOI: 10.1039/d4cs00214h
Sara Catherine Sand, Jennifer L M Rupp, Bilge Yildiz
{"title":"A critical review on Li-ion transport, chemistry and structure of ceramic-polymer composite electrolytes for solid state batteries.","authors":"Sara Catherine Sand, Jennifer L M Rupp, Bilge Yildiz","doi":"10.1039/d4cs00214h","DOIUrl":"https://doi.org/10.1039/d4cs00214h","url":null,"abstract":"<p><p>In the transition to safer, more energy-dense solid state batteries, polymer-ceramic composite electrolytes may offer a potential route to achieve simultaneously high Li-ion conductivity and enhanced mechanical stability. Despite numerous studies on the polymer-ceramic composite electrolytes, disagreements persist on whether the polymer or the ceramic is positively impacted in their constituent ionic conductivity for such composite electrolytes, and even whether the interface is a blocking layer or a highly conductive lithium ion path. This lack of understanding limits the design of effective composite solid electrolytes. By thorough and critical analysis of the data collected in the field over the last three decades, we present arguments for lithium conduction through the bulk of the polymer, ceramic, or their interface. From this analysis, we can conclude that the unexpectedly high conductivity reported for some ceramic-polymer composites cannot be accounted for by the ceramic phase alone. There is evidence to support the theory that the Li-ion conductivity in the polymer phase increases along this interface in contact with the ceramic. The potential mechanisms for this include increased free volume, decreased crystallinity, and modulated Lewis acid-base effects in the polymer, with the former two to be the more likely mechanisms. Future work in this field requires understanding these factors more quantitatively, and tuning of the ceramic surface chemistry and morphology in order to obtain targeted structural modifications in the polymer phase.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" ","pages":""},"PeriodicalIF":40.4,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeted and precise drug delivery using a glutathione-responsive ultra-short peptide-based injectable hydrogel as a breast cancer cure. 利用谷胱甘肽响应型超短肽注射水凝胶靶向精确给药治疗乳腺癌。
IF 12.2 2区 材料科学
Materials Horizons Pub Date : 2024-11-18 DOI: 10.1039/d4mh00981a
Satyajit Halder, Tanushree Das, Ritvika Kushwaha, Anup Kumar Misra, Kuladip Jana, Debapratim Das
{"title":"Targeted and precise drug delivery using a glutathione-responsive ultra-short peptide-based injectable hydrogel as a breast cancer cure.","authors":"Satyajit Halder, Tanushree Das, Ritvika Kushwaha, Anup Kumar Misra, Kuladip Jana, Debapratim Das","doi":"10.1039/d4mh00981a","DOIUrl":"https://doi.org/10.1039/d4mh00981a","url":null,"abstract":"<p><p>Harnessing the potential of hydrogel-based localized drug delivery systems holds immense promise for mitigating the systemic side effects associated with conventional cancer therapies. However, the development of such systems demands the fulfillment of multiple stringent criteria, including injectability, biocompatibility, and controlled release. Herein, we present an ultra-small peptide-based hydrogel for the sustained and targeted delivery of doxorubicin in a murine model of breast cancer. The hydrogel evades dissolution and remains stable in biological fluids, serving as a reliable drug reservoir. However, it specifically reacts to the high levels of glutathione (GSH) in the tumor microenvironment and releases drugs in a controlled manner over time for consistent therapeutic benefits. Remarkably, administration of a single dose of doxorubicin-loaded hydrogel elicited superior tumor regression (approximately 75% within 18 days) compared to conventional doxorubicin treatment alone. Furthermore, the persistent presence of the drug-loaded hydrogel near the tumor site for up to 18 days after administration highlights its enduring effectiveness. There is great clinical potential for this localized delivery strategy because of the minimal off-target effects on healthy tissues. Our findings underscore the efficacy of this smart peptide-hydrogel platform and pave the way for developing next-generation localized drug delivery systems with enhanced therapeutic outcomes in cancer treatment.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoscale Horizons Emerging Investigator Series: Dr Mohammad Malakooti, University of Washington, USA. 纳米地平线新兴研究者系列:美国华盛顿大学 Mohammad Malakooti 博士。
IF 8 2区 材料科学
Nanoscale Horizons Pub Date : 2024-11-18 DOI: 10.1039/d4nh90077d
{"title":"<i>Nanoscale Horizons</i> Emerging Investigator Series: Dr Mohammad Malakooti, University of Washington, USA.","authors":"","doi":"10.1039/d4nh90077d","DOIUrl":"https://doi.org/10.1039/d4nh90077d","url":null,"abstract":"<p><p>Our Emerging Investigator Series features exceptional work by early-career nanoscience and nanotechnology researchers. Read Mohammad Malakooti's Emerging Investigator Series article 'Green synthesis of iron-doped graphene quantum dots: an efficient nanozyme for glucose sensing' (https://doi.org/10.1039/D4NH00024B) and read more about him in the interview below.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biological metasurfaces based on tailored Luria Bertani Agar growth medium formulations for photonic applications. 基于定制的 Luria Bertani 琼脂生长培养基配方的光子应用生物超表面。
IF 12.2 2区 材料科学
Materials Horizons Pub Date : 2024-11-18 DOI: 10.1039/d4mh00861h
Francesca Leone, Olga Favale, Mauro Daniel Luigi Bruno, Roberto Bartolino, Ferdinanda Annesi, Vincenzo Caligiuri, Antonio De Luca
{"title":"Biological metasurfaces based on tailored Luria Bertani Agar growth medium formulations for photonic applications.","authors":"Francesca Leone, Olga Favale, Mauro Daniel Luigi Bruno, Roberto Bartolino, Ferdinanda Annesi, Vincenzo Caligiuri, Antonio De Luca","doi":"10.1039/d4mh00861h","DOIUrl":"https://doi.org/10.1039/d4mh00861h","url":null,"abstract":"<p><p>Biodegradable alternatives to classic solid-state components are rapidly taking place in front-end photonic systems like metamaterials, meta-surfaces and photonic crystals. From this point of view, numerous solutions have been proposed involving eco-friendly compounds. Among them, the Luria Bertani agar (LBA) growth medium has been recently proposed as a functional option with the remarkable advantage of allowing the growth of fluorescent protein expressing bacteria. Such a possibility promises to lead to development of a new generation of biological and eco-sustainable optical sources based on meta-surfaces. There is, however, still a main drawback to address, related to the highly scattering nature of these compounds. To ensure adequate nutritive elements for cell growth, LBA hosts several compounds like NaCl, yeast extracts and tryptone. The presence of these components leads to very scattering LBA films, thus hindering its performance as an optical polymer. A trade-off arises between nutritive capacity and optical performance. In this paper, we successfully address this trade-off, demonstrating that a reduction of the basic nutrients (net Agar concentration) of LBA largely enhances the optical properties of the film as a photonic polymer without compromising its cell-viability. We considered two new LBA formulations with two- (LB<sub>2</sub>A) and four-fold (LB<sub>4</sub>A) reduction of the nutrients and replicated a square-lattice meta-surface used as a benchmark architecture. We demonstrated that both the replica molding performances and the optical properties (absorption, scattering and diffraction efficiency) of LBA formulations increase with decreasing nutrient concentration, without losing their cell-growth capability. To demonstrate this fundamental aspect, we inoculated the most critical case of LB<sub>4</sub>A with green-fluorescent-protein-expressing <i>E. coli</i> bacteria, verifying both their vitality and good photoluminescence properties. These results overcome one of the main limitations of LBA as a functional biopolymer for optical applications, unlocking its use in a new generation of biological quantum optical frameworks for all-biological weak and strong light-matter interactions.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A switchable and facile ionic diode modulated by polyethylene glycol. 由聚乙二醇调制的可切换式简易离子二极管。
IF 4.3 2区 化学
Chemical Communications Pub Date : 2024-11-18 DOI: 10.1039/d4cc05283h
Fei Zheng, HongLuan Li, Jun Yang, Haiyan Wang, Guangle Qin, Dapeng Chen, Jingjie Sha
{"title":"A switchable and facile ionic diode modulated by polyethylene glycol.","authors":"Fei Zheng, HongLuan Li, Jun Yang, Haiyan Wang, Guangle Qin, Dapeng Chen, Jingjie Sha","doi":"10.1039/d4cc05283h","DOIUrl":"https://doi.org/10.1039/d4cc05283h","url":null,"abstract":"<p><p>We introduce a switchable ionic diode modulated by PEG, enabling dynamic control of ion transport and reversible ion flow switching. This system achieves tunable current rectification over two orders of magnitude, simplifying fabrication and offering versatile, scalable solutions for high-performance ionic devices in energy harvesting, nanofluidics, and ionic circuits.</p>","PeriodicalId":67,"journal":{"name":"Chemical Communications","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrocatalytic reduction of N2 to NH3 by MIL-88-derived pod-like Fe7Se8/C nanomaterials under ambient conditions. MIL-88 衍生的荚状 Fe7Se8/C 纳米材料在环境条件下电催化还原 N2 到 NH3。
IF 4.3 2区 化学
Chemical Communications Pub Date : 2024-11-18 DOI: 10.1039/d4cc04683h
Gongyao Nie, Huanhuan Zhang, Lanhua Yi, Xiao Ma, Wei Yi, Jiawei Wan, Yebo Lu, Xingzhu Wang
{"title":"Electrocatalytic reduction of N<sub>2</sub> to NH<sub>3</sub> by MIL-88-derived pod-like Fe<sub>7</sub>Se<sub>8</sub>/C nanomaterials under ambient conditions.","authors":"Gongyao Nie, Huanhuan Zhang, Lanhua Yi, Xiao Ma, Wei Yi, Jiawei Wan, Yebo Lu, Xingzhu Wang","doi":"10.1039/d4cc04683h","DOIUrl":"https://doi.org/10.1039/d4cc04683h","url":null,"abstract":"<p><p>In this paper, pod-like Fe<sub>7</sub>Se<sub>8</sub>/C nanocomposite catalyst materials were prepared by MIL-88 selenide annealing and the as-prepared Fe<sub>7</sub>Se<sub>8</sub>/C nanocatalyst exhibited excellent electrocatalytic performance in neutral electrolyte for the electrocatalytic nitrogen reduction reaction (eNRR). The average ammonia yield rate was 7.11 μg h<sup>-1</sup> mg<sub>cat</sub><sup>-1</sup> with a corresponding faradaic efficiency (FE) of 10.44% obtained at the optimum potential of -0.3 V. Moreover, the as-prepared Fe<sub>7</sub>Se<sub>8</sub>/C electrocatalyst shows good selectivity and stability for the eNRR.</p>","PeriodicalId":67,"journal":{"name":"Chemical Communications","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of gelatin hydrogels using pre-coordinated lanthanide complexes via imine crosslinking. 通过亚胺交联使用预配位镧系元素复合物制造明胶水凝胶。
IF 4.3 2区 化学
Chemical Communications Pub Date : 2024-11-18 DOI: 10.1039/d4cc03886j
Chen-Cheng Yu, Yu Yun Hsu, Yu-Chia Su, Yi-Chen Yang, Tzu-Ying Wang, Yi-Cheun Yeh
{"title":"Fabrication of gelatin hydrogels using pre-coordinated lanthanide complexes <i>via</i> imine crosslinking.","authors":"Chen-Cheng Yu, Yu Yun Hsu, Yu-Chia Su, Yi-Chen Yang, Tzu-Ying Wang, Yi-Cheun Yeh","doi":"10.1039/d4cc03886j","DOIUrl":"https://doi.org/10.1039/d4cc03886j","url":null,"abstract":"<p><p>Pre-coordinated lanthanide-containing complexes are used to crosslink polyethyleneimine-modified gelatin to form gelatin hydrogel through imine bond formation.</p>","PeriodicalId":67,"journal":{"name":"Chemical Communications","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface coverage and reconstruction analyses bridge the correlation between structure and activity for electrocatalysis. 表面覆盖和重构分析为电催化的结构和活性之间的关联架起了桥梁。
IF 4.3 2区 化学
Chemical Communications Pub Date : 2024-11-18 DOI: 10.1039/d4cc03875d
Zhongyuan Guo, Tianyi Wang, Jiang Xu, Ang Cao, Hao Li
{"title":"Surface coverage and reconstruction analyses bridge the correlation between structure and activity for electrocatalysis.","authors":"Zhongyuan Guo, Tianyi Wang, Jiang Xu, Ang Cao, Hao Li","doi":"10.1039/d4cc03875d","DOIUrl":"https://doi.org/10.1039/d4cc03875d","url":null,"abstract":"<p><p>Electrocatalysis is key to realizing a sustainable future for our society. However, the complex interface between electrocatalysts and electrolytes presents an ongoing challenge in electrocatalysis, hindering the accurate identification of effective/authentic structure-activity relationships and determination of favourable reaction mechanisms. Surface coverage and reconstruction analyses of electrocatalysts are important to address each conjecture and/or conflicting viewpoint on surface-active phases and their corresponding electrocatalytic origin, <i>i.e.</i>, so-called structure-activity relationships. In this review, we emphasize the importance of surface states in electrocatalysis experimentally and theoretically, providing guidelines for research practices in discovering promising electrocatalysts. Then, we summarize some recent progress of how surface states determine the adsorption strengths and reaction mechanisms of occurring electrocatalytic reactions, exemplified in the electrochemical oxygen evolution reaction, oxygen reduction reaction, nitrogen reduction reaction, CO<sub>2</sub> reduction reaction, CO<sub>2</sub> and N<sub>2</sub> co-reductions, and hydrogen evolution reaction. Finally, the review proposes deep insights into the <i>in situ</i> study of surface states, their efficient building and the application of surface Pourbaix diagrams. This review will accelerate the development of electrocatalysts and electrocatalysis theory by arousing broad consensus on the significance of surface states.</p>","PeriodicalId":67,"journal":{"name":"Chemical Communications","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adhesive silk fibroin/magnesium composite films and their application for removable wound dressing. 粘性丝纤维素/镁复合膜及其在可移动伤口敷料中的应用。
IF 5.8 3区 医学
Biomaterials Science Pub Date : 2024-11-18 DOI: 10.1039/d4bm01411a
Qiaolin Chen, Kang Wu, Jinrong Yao, Zhengzhong Shao, Xin Chen
{"title":"Adhesive silk fibroin/magnesium composite films and their application for removable wound dressing.","authors":"Qiaolin Chen, Kang Wu, Jinrong Yao, Zhengzhong Shao, Xin Chen","doi":"10.1039/d4bm01411a","DOIUrl":"https://doi.org/10.1039/d4bm01411a","url":null,"abstract":"<p><p>Silk fibroin is a naturally abundant biomaterial renowned for its excellent biocompatibility and biodegradability, making it a promising candidate for biomedical applications like wound dressings. However, traditional silk fibroin materials often lack sufficient mechanical strength, adhesion, and the ability to modulate inflammation and oxidative stress-factors crucial for effective wound healing. To address these limitations, regenerated silk fibroin/magnesium ion [RSF/Mg(II)] composite films were developed by incorporating Mg(II) ions into RSF solutions. These films were characterized using Raman spectroscopy, mechanical testing, and biocompatibility assessments, and their wound-healing efficacy was evaluated in a mouse skin defect model. The RSF/Mg(II) composite films exhibited superior adhesion, higher transparency, and enhanced mechanical flexibility compared to pristine RSF films. They also demonstrated anti-inflammatory and antioxidative properties, effectively reducing cell apoptosis and reactive oxygen species levels <i>in vitro</i>. <i>In vivo</i>, the RSF/Mg Mg(II) composite films significantly accelerated wound healing in mice, improving epidermal thickness, collagen deposition, and promoting blood vessel formation. This study highlights the potential of RSF/Mg(II) composite films as advanced wound dressings with improved biocompatibility and biological activity, offering valuable insights for the development of Mg(II) ion-based biomaterials in wound healing and tissue regeneration applications.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Debottlenecking cytochrome P450-dependent metabolic pathways for the biosynthesis of commercial natural products. 去瓶颈化细胞色素 P450 依赖性代谢途径,促进商业天然产品的生物合成。
IF 10.2 1区 化学
Natural Product Reports Pub Date : 2024-11-18 DOI: 10.1039/d4np00027g
Susanne M Germann, Maxence Holtz, Michael Krogh Jensen, Carlos G Acevedo-Rocha
{"title":"Debottlenecking cytochrome P450-dependent metabolic pathways for the biosynthesis of commercial natural products.","authors":"Susanne M Germann, Maxence Holtz, Michael Krogh Jensen, Carlos G Acevedo-Rocha","doi":"10.1039/d4np00027g","DOIUrl":"https://doi.org/10.1039/d4np00027g","url":null,"abstract":"<p><p>Covering: 2016 to the end of 2024This highlight article aims to provide a perspective on the challenges that novel biotechnological processes face in the biomanufacturing of natural products (NPs) whose biosynthesis pathways rely on cytochrome P450 monooxygenases. This enzyme superfamily is one of the most versatile in the biosynthesis of a plethora of NPs finding use across the food, nutrition, medicine, chemical and cosmetics industries. These enzymes often exhibit excellent regio- and stereoselectivity, but they can suffer from low activity and instability, which are serious issues impairing the development of high performing bioprocesses. We start with a brief introduction to industrial biotechnology and the importance of looking for alternative means for producing NPs independently from unsustainable fossil fuels or plant extractions. We then discuss the challenges and implemented solutions during the development of commercial NP processes focusing on the P450-dependent steps primarily in yeast cell factories. Our main focus is to highlight the challenges often encountered when utilizing P450-dependent NP pathways, and how protein engineering can be used for debottlenecking them. Finally, we briefly touch upon the importance of artificial intelligence and machine learning for guiding engineering efforts.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":" ","pages":""},"PeriodicalIF":10.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信