{"title":"<i>Brassica rapa</i> L. crude polysaccharide meditated synbiotic fermented whey beverage ameliorates hypobaric hypoxia induced intestinal damage.","authors":"Yuanlin Niu, Tingting Zhao, Zhenjiang Liu, Diantong Li, Dongxu Wen, Bin Li, Xiaodan Huang","doi":"10.1039/d4fo04667f","DOIUrl":"https://doi.org/10.1039/d4fo04667f","url":null,"abstract":"<p><p>Hypobaric hypoxia causes oxidative stress and inflammatory responses and disrupts the gut microbiome and metabolome. In this study, we developed a synbiotic fermented whey beverage, combining kefir and <i>Brassica rapa</i> L. crude polysaccharides, to explore its protective effects against high-altitude induced injury in mice. The beverage, formulated with 0.8% (w/v) polysaccharides and kefir inoculation, demonstrated robust fermentation parameters and antioxidative capacity. When applied to a hypobaric hypoxia mouse model, the synbiotic fermented whey significantly reduced oxidation and protected the intestinal barrier by lowering inflammation, protecting the intestinal structure, increasing goblet cell counts, and reducing apoptosis. It also modulated the gut microbiota, enriching beneficial taxa as <i>Intestinimonas</i> and <i>Butyricicoccaceae</i>, while reducing harmful ones like <i>Marvinbryantia</i> and <i>Proteus</i>, and enhancing short-chain fatty acid (SCFA) production. Notably, the beverage increased berberine and nicotinic acid levels, activating the adenosine monophosphate-activated protein kinase (AMPK) signalling pathway and influencing nicotinate and nicotinamide metabolites linked to the suppression of <i>Marvinbryantia</i>, thereby alleviating intestinal inflammation and barrier damage. These effects contributed to the alleviation of hypoxia-induced intestinal damage in mice. This study highlights the potential of synbiotics and whey fermentation in novel nutritional interventions in high altitude environments.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bioaccessibility and unravelling of polyphenols, sulforaphane, and indoles biotransformation after <i>in vitro</i> gastrointestinal digestion of a novel lactofermented broccoli beverage.","authors":"José Ángel Salas-Millán, Encarna Aguayo","doi":"10.1039/d4fo03528c","DOIUrl":"https://doi.org/10.1039/d4fo03528c","url":null,"abstract":"<p><p>This study assesses the transformation and stability of polyphenols, sulforaphane, and indoles in a fermented beverage made from broccoli leaves during <i>in vitro</i> gastrointestinal digestion (GID). This process was simulated using a dialysis membrane to assess intestinal absorption. The total phenolic compounds (TPC) and antioxidant TEAC assays showed an increase in phytochemical content due to the GID process. The higher TPC and antioxidant activity observed after digestion was likely due to the enzymatic transformation of polyphenols in mildly alkaline conditions. Individual phytochemical analysis revealed that hydroxycinnamic acids, particularly 3CQa, remained stable initially but then decreased significantly during intestinal digestion. Acylated flavonoids exhibited a decrease during intestinal digestion, while deacylated flavonoids initially decreased before stabilising. This indicated the occurrence of enzymatic hydrolysis of more structurally complex flavonoids to glycosylated flavonoids such as kaempferol-3,7-diglucoside, and kaempferol-3-sophoroside-7-glucoside. Consequently, deacylated flavonoids were highlighted for their high bioaccessibility rate after <i>in vitro</i> GID. Glucosinolate-hydrolysis products, including sulforaphane and indoles, exhibited a general decrease during digestion, with sulforaphane showing 51% bioaccessibility. The study highlights the dialysed <i>in vitro</i> GID process, which affects the release and transformation of bioactive compounds, potentially increasing their bioaccessibility and the subsequent health benefits of the lactofermented beverage made from broccoli leaves.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Emerging 2D materials hardware for in-sensor computing.","authors":"Yufei Shi, Ngoc Thanh Duong, Kah-Wee Ang","doi":"10.1039/d4nh00405a","DOIUrl":"https://doi.org/10.1039/d4nh00405a","url":null,"abstract":"<p><p>The advent of the novel in-sensor/near-sensor computing paradigm significantly eliminates the need for frequent data transfer between sensory terminals and processing units by integrating sensing and computing functions into a single device. This approach surpasses the traditional configuration of separate sensing and processing units, thereby greatly simplifying system complexity. Two-dimensional materials (2DMs) show immense promise for implementing in-sensor computing systems owing to their exceptional material properties and the flexibility they offer in designing innovative device architectures with heterostructures. This review highlights recent progress and advancements in 2DM-based in-sensor computing research, summarizing the unique physical mechanisms that can be leveraged in 2DM-based devices to achieve sensory responses and the essential biomimetic synaptic characteristics for computing functions. Additionally, the potential applications of 2DM-based in-sensor computing systems are discussed and categorized. This review concludes with a perspective on future development directions for 2DM-based in-sensor computing.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soft MatterPub Date : 2024-11-18DOI: 10.1039/d4sm01196a
Ignaas S M Jimidar, Mitch T J de Waard, Gijs Roozendaal, Kai Sotthewes
{"title":"Solvent-free confinement of ordered microparticle monolayers: effect of host substrate and pattern symmetry.","authors":"Ignaas S M Jimidar, Mitch T J de Waard, Gijs Roozendaal, Kai Sotthewes","doi":"10.1039/d4sm01196a","DOIUrl":"https://doi.org/10.1039/d4sm01196a","url":null,"abstract":"<p><p>The self-organisation of individual suspended colloids into ordered structures that can be mediated by confinement has garnered interest recently. Despite the push for solvent reduction for sustainability reasons, the comprehension and development of solvent-free assembly methods remain largely unaddressed. In this study, we explore the effect of confinement without rigid geometrical constraints, <i>i.e.</i>, wall-less confinement on the assembly of monodisperse PMMA powder microspheres (diameters of 3 μm and 10 μm) on fluorocarbon-patterned heterogeneous substrates using a solvent-free rubbing assembly approach. Our findings reveal that the PMMA microspheres self-align on the fluorocarbon patterns, adapting to various geometrical shapes of these patterns through symmetry matching. The assembly process is driven by triboelectric charging and elastic properties of the microspheres and substrates. Moreover, we observe that the host substrate and the particle and pattern size ratio significantly influence the ordering of the microparticles on the fluorocarbon patterns. Ultimately, we demonstrate the successful use of fluorocarbon patterns to assemble tunable crystal patterns on rigid substrates, which typically do not exhibit any ordering.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dopil Kim, Jun Yeong Kim, Haein Kim, Eunjin Jeong, Minhyuk Lee, Dongwook Kim, JunWoo Kim, Myung Hwan Park, Min Kim
{"title":"Positional effects of electron-donating and withdrawing groups on the photophysical properties of single benzene fluorophores.","authors":"Dopil Kim, Jun Yeong Kim, Haein Kim, Eunjin Jeong, Minhyuk Lee, Dongwook Kim, JunWoo Kim, Myung Hwan Park, Min Kim","doi":"10.1039/d4cc04451g","DOIUrl":"10.1039/d4cc04451g","url":null,"abstract":"<p><p>We investigated how the positional arrangement of electron-donating (amino) and electron-withdrawing (ester) groups in single benzene-based fluorophores influences their emission properties. By synthesizing 26 regioisomeric fluorophores, we achieved wavelength modulation from 322 to 539 nm, revealing key correlations between functional group positioning and photophysical behavior.</p>","PeriodicalId":67,"journal":{"name":"Chemical Communications","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soft MatterPub Date : 2024-11-18DOI: 10.1039/d4sm00886c
Ji Zhang, Jeremy J Baumberg, Sohini Kar-Narayan
{"title":"The thickness-dependent response of aerosol-jet-printed ultrathin high-aspect-ratio electrochemical microactuators.","authors":"Ji Zhang, Jeremy J Baumberg, Sohini Kar-Narayan","doi":"10.1039/d4sm00886c","DOIUrl":"10.1039/d4sm00886c","url":null,"abstract":"<p><p>Trilayer electrochemical actuators comprising an electrolyte layer sandwiched between two electrode layers have been shown to exhibit large deformations at low actuation voltages. Here we report the aerosol-jet printing (AJP) of high-aspect-ratio bending-type trilayer electrochemical microactuators comprised of Nafion as the electrolyte and poly(3,4-ethylenedioxythiophene)polystyrene sulfonate (PEDOT:PSS) as the electrode. We investigated how the thicknesses of the electrolyte and electrode layers affect the DC response of these actuators by fabricating high-aspect-ratio trilayer cantilevers with varied layer thicknesses (0.36 μm to 1.9 μm-thick electrodes, and 3.5 μm to 12 μm-thick electrolyte layers). We found that the transported charge and angular deflection are proportional to the applied voltage at steady state, and the charge-to-voltage ratio scales with the PEDOT:PSS thickness. The deflection-to-voltage ratio is found to be strongly affected by the Nafion electrolyte thickness, showing a decreasing trend, but is less affected by the PEDOT:PSS thickness in the range of dimensions fabricated. The timescales for deflection are found to be generally longer than the timescales for charge transfer and no clear trend is observed with respect to layer thicknesses. This work establishes an experimental protocol in geometry optimisation of printed electrochemical microactuators, verifies the applicability of a theoretical model, and lays the groundwork for designing and optimising more sophisticated printed electrochemical microactuation systems.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrochemical sensors based on composites of porous Fe<sub>3</sub>O<sub>4</sub>/C and carbon black for sensitive and rapid detection of propofol.","authors":"Shouhui Chen, Dan Zhou, Qinghao Xiong, Yinan Yang, Mingyang Zhang, Shoulin Chen","doi":"10.1039/d4ay01280a","DOIUrl":"https://doi.org/10.1039/d4ay01280a","url":null,"abstract":"<p><p>Nowadays, many people are turning to medications that can help them stay calm during surgeries and their daily lives. As an anesthetic that reduces the excitability of nerve cells, propofol can achieve sedation with the advantages of fast onset and short half-life. The development of propofol sensors has tremendous application potential because they can help healthcare professionals dynamically regulate the concentration of propofol in the blood, not only to achieve the painless surgeries that patients want, to maintain the sedation that surgeons desire, but also to prevent the respiratory failure that may occur with a patient's daily sleep aids. In this paper, we prepared Fe<sub>3</sub>O<sub>4</sub>/C/CB nanocomposites by doping carbon black on the surface of the pyrolyzed product of MIL-88B. The nanocomposites-modified glassy carbon electrodes were used to detect propofol in phosphate buffer solution. The porous nanocomposites with high electrical conductivity promoted the charge transfer on the electrode surface, improving the performance of the modified electrodes. After optimization, the linear range, the detection limit, and the sensitivity for propofol were 5.0-205 μM, 0.102 μM, and 2.850 μA cm<sup>-2</sup> μM<sup>-1</sup>, respectively. The electrochemical sensing of propofol in a medical propofol emulsion injection and in normal human serum showed that the method was rapid and repeatable.</p>","PeriodicalId":64,"journal":{"name":"Analytical Methods","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improved volatiles analysis workflows using automated selected ion flow tube mass spectrometry (SIFT-MS).","authors":"Vaughan S Langford, Mark J Perkins","doi":"10.1039/d4ay01707b","DOIUrl":"https://doi.org/10.1039/d4ay01707b","url":null,"abstract":"<p><p>Selected ion flow tube mass spectrometry (SIFT-MS) is a recent addition to the routine analysis and research laboratory toolkit, primarily as a quantitative tool. SIFT-MS employs ultra-soft chemical ionisation to directly analyse volatile organic compounds (VOCs) in air and headspace in real-time with high specificity and sensitivity. Coupling SIFT-MS with conventional laboratory automation equipment (<i>i.e.</i>, that used with chromatography systems) has proved straightforward and enables unattended operation, processing up to 230 samples per day per SIFT-MS instrument. Automated SIFT-MS systems have been applied to analysis of headspace (static, continuous, multiple headspace extraction, and standard additions), sample bags, and thermal desorption tubes. Applications using these approaches include consumer and drug product testing for volatile impurities (such as benzene, formaldehyde, and nitrosamines), environmental samples, clinical research, and materials testing. The stability of the SIFT-MS technique, coupled with its ability to analyse diverse VOCs in a single run, removes the need for system configuration changes and hence reduces calibration demand and streamlines workflows, reducing the time to report the first results in a sequence schedule and increasing sample throughput compared to chromatographic systems. This article reviews the development of the automated-SIFT-MS approach using a variety of application examples and recommends hardware and software improvements that could further enhance its adoption.</p>","PeriodicalId":64,"journal":{"name":"Analytical Methods","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RSC AdvancesPub Date : 2024-11-18DOI: 10.1039/D4RA06187J
Issara Sereewatthanawut, Notsawan Swadchaipong, Vut Tongnan, Chalempol Khajonvittayakul, Panupan Maneesard, Rossarin Ampairojanawong, Ammarika Makdee, Matthew Hartley, Kang Li and Unalome Wetwatana Hartley
{"title":"Direct dimethyl carbonate synthesis from CO2 and methanol over a flower-like CeO2 catalyst with 2-cyanopyridine as a dehydrating agent in continuous packed-bed reactor","authors":"Issara Sereewatthanawut, Notsawan Swadchaipong, Vut Tongnan, Chalempol Khajonvittayakul, Panupan Maneesard, Rossarin Ampairojanawong, Ammarika Makdee, Matthew Hartley, Kang Li and Unalome Wetwatana Hartley","doi":"10.1039/D4RA06187J","DOIUrl":"https://doi.org/10.1039/D4RA06187J","url":null,"abstract":"<p >A flower-like CeO<small><sub>2</sub></small> catalyst was successfully synthesized using an acrylamide graft copolymerized on glucose under hydrothermal conditions and used for the direct synthesis of dimethyl carbonate (DMC) from CO<small><sub>2</sub></small> and CH<small><sub>3</sub></small>OH in a packed-bed reactor with 2-cyanopyridine as a dehydrating agent. The synthesized flower-like CeO<small><sub>2</sub></small> exhibited both basicity and acidity properties with values of 300 μmol g<small><sup>−1</sup></small> and 80 μmol g<small><sup>−1</sup></small>, respectively, according to CO<small><sub>2</sub></small>-TPD and NH<small><sub>3</sub></small>-TPD results. The effect of reaction parameters such as reaction temperature, feed ratio, catalyst quantity, and operating pressure on the DMC production over the flower-like CeO<small><sub>2</sub></small> catalyst was investigated. The optimum conditions were found to be a temperature of 120 °C, catalyst weight of 1.0 g, CH<small><sub>3</sub></small>OH : CO<small><sub>2</sub></small> ratio of 1 : 1, and pressure of 30 bar, which provided the highest CH<small><sub>3</sub></small>OH conversion, DMC selectivity, and DMC yield of 86.6%, 99.3%, and 86.0%, respectively. Furthermore, no changes were observed in the structure, morphology, and particle size of the flower-like CeO<small><sub>2</sub></small> catalyst after the DMC synthesis reaction, indicating that the synthesized catalyst was resistant to the reaction test under such optimum reaction conditions.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 49","pages":" 36771-36781"},"PeriodicalIF":3.9,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ra/d4ra06187j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soft MatterPub Date : 2024-11-18DOI: 10.1039/d4sm01022a
Sthavishtha R Bhopalam, Jesus Bueno, Hector Gomez
{"title":"<i>Fibrotaxis</i>: gradient-free, spontaneous and controllable droplet motion on soft solids.","authors":"Sthavishtha R Bhopalam, Jesus Bueno, Hector Gomez","doi":"10.1039/d4sm01022a","DOIUrl":"https://doi.org/10.1039/d4sm01022a","url":null,"abstract":"<p><p>Most passive droplet transport strategies rely on spatial variations of material properties to drive droplet motion, leading to gradient-based mechanisms with intrinsic length scales that limit the droplet velocity or the transport distance. Here, we propose droplet <i>fibrotaxis</i>, a novel mechanism that leverages an anisotropic fiber-reinforced deformable solid to achieve spontaneous and gradient-free droplet transport. Using high-fidelity simulations, we identify the fluid wettability, fiber orientation, anisotropy strength and elastocapillary number as critical parameters that enable controllable droplet velocity and long-range droplet transport. Our results highlight the potential of fibrotaxis as a droplet transport mechanism that can have a strong impact on self-cleaning surfaces, water harvesting and medical diagnostics.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}