Michael N Kammer, Amanda K Kussrow, Darryl J Bornhop
{"title":"Theoretical Basis for Refractive Index Changes Resulting from Solution Phase Molecular Interaction.","authors":"Michael N Kammer, Amanda K Kussrow, Darryl J Bornhop","doi":"10.1021/acs.jpcb.4c07563","DOIUrl":"10.1021/acs.jpcb.4c07563","url":null,"abstract":"<p><p>Refractive index (RI) is a fundamental optical property widely used to investigate the physical and chemical characteristics of materials. Here, we build on our previous work to refine the framework for RI sensing in solution-phase chemical and biochemical interactions. Starting from the Clausius-Mossotti relation, we present a first-principles derivation of a relationship for the RI signal resulting from chemical binding. We then demonstrate how the binding-induced conformational and hydration changes of interacting species relate to their estimated change in dielectric and thus the solution-phase change in refractive index (ΔRI). By varying the model parameters, such as solvation shell size and polarizability, we investigate the RI changes for two interactions: Ca<sup>2+</sup> with the protein Recoverin and benzenesulfonamide with carbonic anhydrase 2 (CAII). These examples show that our theory predicts that even for small changes in binding-induced <i>polarizability</i> (relative to previous literature values), a quantifiable RI change is produced within the detectable range of RI detectors operating at ca. 10<sup>-6</sup> RIU. Empirical observations confirm our theoretical predictions. Surprisingly, theory and experiment yield a <i>decrease</i> in ΔRI for the benzenesulfonamide-CAII interaction. We attribute this observation to shielding of charged residues and water molecule displacement during the binding event. Our approach is generalized, enabling it to be extended to other binding systems, as well as those undergoing nonbinding conformational changes, and facilitates the exploration of diverse biological and chemical processes by solution-phase RI sensing.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"3297-3305"},"PeriodicalIF":2.8,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143699133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Solvatochromism Observed in the X-ray Absorption Spectrum of Indole Dissolved in Water.","authors":"Shota Tsuru, Masanari Nagasaka","doi":"10.1021/acs.jpca.5c00456","DOIUrl":"10.1021/acs.jpca.5c00456","url":null,"abstract":"<p><p>Current developments in X-ray absorption spectroscopy (XAS) for liquid samples in the water window demand a rigorous understanding of the interactions between molecules or solute-solvent interactions observed in the spectra. Meanwhile, a theoretical description of such effects, in addition to inner-shell excitations, remains controversial. The controversy is mainly over whether the orbitals should be optimized in the final states or whether the orbital optimizations can be expressed by dynamic electron correlation. In the present work, we measured the XAS spectra of indole in aqueous solution at the carbon and nitrogen K-edges to compare them with those measured in the gas phase. Obvious solvatochromism was observed only in the XAS spectrum measured at the nitrogen K-edge. We then interpreted the observed solvatochromism by simulating spectra with both ΔSCF, where the orbitals were optimized in the final states, and the algebraic-diagrammatic construction through second order [ADC(2)], where the molecular orbitals optimized in the ground state were used throughout. The present results indicate that covalent interactions, such as hydrogen bonds, are the dominant causes of the solvation effects observed in XAS spectra. The present simulations with ΔSCF and ADC(2), in addition to some other reports, highlight the importance of optimizing the orbitals in the final inner-shell excited states for general inner-shell calculations with predictive accuracy.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"3020-3031"},"PeriodicalIF":2.7,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143672871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Porous Sodium Carboxymethyl Starch Microspheres for Hemostasis and Skin Wound Healing.","authors":"Qing Zhou, Wenjie Chen, Han Wang, Cuicui Wu, Qianqian Zhu, Lei Luo, Xiao Zheng, Chenglong Yu, Aijun Guo, Jianjin Wang, Shunqing Tang","doi":"10.1021/acsabm.4c01933","DOIUrl":"https://doi.org/10.1021/acsabm.4c01933","url":null,"abstract":"<p><p>An effective and rapid hemostatic material with flexible properties for clinical wound dressings is still an unmet need. Herein, a porous sodium carboxymethyl starch (CMS-Na-P) hemostatic microsphere was successfully fabricated through polysaccharide fluffy aggregate (PSFA) technology with a facile and low-cost process. CMS-Na-P exhibited rapid water absorption capabilities alongside favorable cytocompatibility and hemocompatibility. Additionally, CMS-Na-P could absorb red blood cells (RBCs), adhere to and activate platelets, and shorten clotting time <i>in vitro</i>. More importantly, its good <i>in vivo</i> hemostatic ability was further demonstrated against hemorrhage in rat liver and tail, pig superficial skin, superficial body vein, superficial abdominal vein, and femoral artery. Meanwhile, in a rat full-thickness skin defect model, CMS-Na-P could enhance wound healing through accelerated epidermal regeneration and collagen deposition. These properties make CMS-Na-P a promising candidate for treating bleeding and full-thickness wounds.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143770683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ece Guler, Humeyra B Yekeler, Zarife N Ozdemir Kumral, Gita Parviz, Gul S Ozcan, Burcu Uner, Sinem G Demirbas, Simge Ayyildiz, Yusufhan Yazir, Deepak Kalaskar, Muhammet E Cam
{"title":"Retraction of \"Fabrication of Oro-Dispersible Sodium Valproate-Loaded Nanofibrous Patches for Immediate Epileptic Innervation\".","authors":"Ece Guler, Humeyra B Yekeler, Zarife N Ozdemir Kumral, Gita Parviz, Gul S Ozcan, Burcu Uner, Sinem G Demirbas, Simge Ayyildiz, Yusufhan Yazir, Deepak Kalaskar, Muhammet E Cam","doi":"10.1021/acsbiomaterials.5c00432","DOIUrl":"https://doi.org/10.1021/acsbiomaterials.5c00432","url":null,"abstract":"","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143770719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fc Multisite Conjugation and Prolonged Delivery of the Folate-Targeted Drug Conjugate EC140.","authors":"Yan Zheng, Hong Cheng, Sibo Jiang, Wanyi Tai","doi":"10.1021/acs.bioconjchem.5c00037","DOIUrl":"https://doi.org/10.1021/acs.bioconjchem.5c00037","url":null,"abstract":"<p><p>Small molecule-drug conjugate (SMDC) is a targeted drug delivery technology that develops in parallel with the antibody-drug conjugate. However, the clinical translation of SMDC faces challenges due to its limited circulating half-life in vivo. The drawback in pharmacokinetics is that it restricts the exposure time of SMDC to tumor tissues and ultimately reduces the therapeutic efficacy. In this study, we chemically conjugated a folate-targeted SMDC EC140 to the long-circulating Fc protein at multiple sites, yielding a stable and high-DAR Fc-SMDC conjugate (Fc-EC140). Fc-EC140 can bear approximately 4 molecules of EC140 per Fc protein (drug-antibody ratio = 4.1) and display enhanced potency in folate receptor (FR)-positive tumor cells compared to the SMDC comparator. In addition, Fc-EC140 retains the FcRn-mediated recycling function and displays an extended half-life of 28 h in the mice. In vivo, antitumor experiments demonstrate that intravenous administration of Fc-EC140 (Q7D × 3 at a dose of 15 mg/kg) nearly cures the KB tumors, which is far more effective than the comparator EC140 administrated at equivalent doses. This study presents a new strategy for the targeted delivery of SMDC.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143770720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhiling Liu, Yonghong Yan, Yufeng Yang, Xiaoyue Yao, Jingmei Jiao, Fuqiang Zhang, Jianfeng Jia, Ya Li
{"title":"Decentralized Metal-Metal Bonding in the AuNi(CO)<sub>4</sub><sup>-</sup> Anion Described Equally Well with Dative Bonding as with Electron-Sharing Bonding.","authors":"Zhiling Liu, Yonghong Yan, Yufeng Yang, Xiaoyue Yao, Jingmei Jiao, Fuqiang Zhang, Jianfeng Jia, Ya Li","doi":"10.1021/acs.jpca.4c08149","DOIUrl":"10.1021/acs.jpca.4c08149","url":null,"abstract":"<p><p>The heterodinuclear AuNi(CO)<sub>4</sub><sup>-</sup> complex is scrutinized in the gas phase by using mass-selected anionic photoelectron velocity-map imaging spectroscopy in conjunction with theoretical computations. The ground state of AuNi(CO)<sub>4</sub><sup>-</sup> is characterized to have an Au-Ni bonded structure, consisting of an AuCO fragment attached to the Ni center of the Ni(CO)<sub>3</sub> fragment. Comprehensive quantum chemical studies reveal that the AuNi(CO)<sub>4</sub><sup>-</sup> complex at equilibrium structure features a decentralized bonding scenario, where the exotic metal-metal σ bonding may be equally well described with dative bonding as with electron-sharing bonding between two fragments.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"2998-3006"},"PeriodicalIF":2.7,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143699111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quang Khanh Nguyen, Giang Hoang Pham, Thi Thu Huong Chu, Dai Cuong Tran, Sung Ho Yu, Sangho Cho, Myung Mo Sung
{"title":"Phase-Composite InO<sub><i>x</i></sub> Semiconductors for High-Performance Flexible Thin-Film Transistors.","authors":"Quang Khanh Nguyen, Giang Hoang Pham, Thi Thu Huong Chu, Dai Cuong Tran, Sung Ho Yu, Sangho Cho, Myung Mo Sung","doi":"10.1021/acsami.5c00350","DOIUrl":"https://doi.org/10.1021/acsami.5c00350","url":null,"abstract":"<p><p>Indium oxide (InO<sub><i>x</i></sub>) offers high electron mobility and optical transparency, making it a promising material for advanced thin-film transistors (TFTs). However, challenges related to the high carrier concentration, crystallization control, and instability limit its performance. In this study, we demonstrate the fabrication of amorphous/nanocrystal phase-composite InO<sub><i>x</i></sub> films using high-pressure atomic layer deposition (ALD) using InCA-1 and H<sub>2</sub>O<sub>2</sub> as the metal precursor and oxidant, respectively. The amorphous matrix in the phase-composite structure enables resonant hybridization, facilitating efficient electron transport by forming delocalized states via wave function overlap between nanocrystalline and amorphous regions. The systematic investigation of the deposition temperature and channel thickness allowed precise control over carrier concentration and fine-tuning of the phase-composite structure. The optimized InO<sub><i>x</i></sub> films, deposited at 110 °C with a 7.0 nm thick InO<sub><i>x</i></sub> channel, exhibited outstanding electrical properties, including a field-effect mobility of 61.1 cm<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup>, an on/off ratio of ∼0.9 × 10<sup>6</sup>, and a subthreshold swing of 0.45 V dec<sup>-1</sup>. The films also demonstrate high reproducibility, high optical transmittance (>87% in the visible range), and smooth surface morphology with a root-mean-square roughness of 3.03 Å. Moreover, the devices exhibited remarkable mechanical flexibility, maintaining stable operation after 10,000 bending cycles with a bending radius of 3 mm, and excellent environmental stability, retaining performance after 60 days of ambient air exposure. This study addresses key limitations of conventional InO<sub><i>x</i></sub>-based TFTs by improving the phase control, carrier concentration regulation, and mechanical durability, offering a promising pathway for next-generation electronic and optoelectronic applications.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":""},"PeriodicalIF":8.3,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143770688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Combining Molecular Docking and Pharmacophore Models Predicts Ligand Binding of Endocrine-Disrupting Chemicals to Nuclear Receptors.","authors":"Asma Sellami, Matthieu Montes, Nathalie Lagarde","doi":"10.1021/acs.chemrestox.4c00455","DOIUrl":"https://doi.org/10.1021/acs.chemrestox.4c00455","url":null,"abstract":"<p><p>Nuclear receptors form a family of proteins capable of accommodating a wide variety of small molecules in their ligand binding domain, ranging from therapeutic compounds to endocrine-disrupting chemicals. The rapid identification of these compounds, especially within the latter category, is of paramount importance. Using data extracted from the CompTox Dashboard, an Environmental Protection Agency initiative, we assessed the effectiveness of a combination of molecular docking and pharmacophore models in identifying ligands binding to six nuclear receptors: androgen receptor, estrogen receptor alpha, estrogen receptor beta, glucocorticoid receptor, peroxisome proliferator-activated receptor gamma, and thyroid hormone receptor alpha. For each nuclear receptor, we selected a specifically designed and optimized in silico protocol that, in conjunction with experimental assays, can prioritize compounds for further evaluation to detect any potential toxicological concerns.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143770725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David S Hoffmann, Philipp M Dohmen, Monja Sokolov, Ulrich Kleinekathöfer, Marcus Elstner
{"title":"Exciton Transfer Simulations in a Light-Harvesting 2 Complex Reveal the Transient Delocalization Mechanism.","authors":"David S Hoffmann, Philipp M Dohmen, Monja Sokolov, Ulrich Kleinekathöfer, Marcus Elstner","doi":"10.1021/acs.jpcb.5c00320","DOIUrl":"10.1021/acs.jpcb.5c00320","url":null,"abstract":"<p><p>The striking efficiency of exciton transfer in light-harvesting (LH) complexes has remained a topic of debate since the revision of the long-held role of electronic coherences. To address this issue, we have developed a neural network for the pigments in the LH2 complex of <i>Rhodospirillum molischianum</i> that allows nonadiabatic molecular dynamic (NAMD) simulations of exciton transfer in a coupled quantum mechanical/molecular mechanics (QM/MM) embedding. The calculated exciton occupations are averaged over hundreds of trajectories, each lasting several picoseconds. We have obtained transitions within the B800 and B850 rings that agree well with the experimental results, indicating an incoherent hopping process in the B800 ring and a more delocalized transfer in the B850 subsystem. The reorganization energies and excitonic couplings are comparable to each other, indicating that the \"transient delocalization\" transport model is the underlying cause of the highly efficient exciton transport in the B850 ring. This phenomenon can be attributed to a localized exciton that shows occasional large delocalization events. Our results indicate that the reason for the striking efficiency is the unusual electronic property of bacteriochlorophyll, manifested in minimal inner and outer sphere reorganization energies.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"3345-3365"},"PeriodicalIF":2.8,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143699115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hrishikesh Ram, Thomas P Sadej, C Claire Murphy, Tim J Mallo, Phillip R Westmoreland
{"title":"Correction to \"Thermochemistry of Species in Gas-Phase Thermal Oxidation of C<sub>2</sub> to C<sub>8</sub> Perfluorinated Carboxylic Acids\".","authors":"Hrishikesh Ram, Thomas P Sadej, C Claire Murphy, Tim J Mallo, Phillip R Westmoreland","doi":"10.1021/acs.jpca.5c01422","DOIUrl":"10.1021/acs.jpca.5c01422","url":null,"abstract":"","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"3176-3182"},"PeriodicalIF":2.7,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143661777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}