Altered Abundance of Barrier-Related Proteins in Brain Microvascular Endothelial Cells of the GL261 Mouse Model of Glioblastoma.

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Liam M Koehn, Diana Cao, Joel R Steele, Angela Rigopoulos, Ingrid Jg Burvenich, Han Chung-Lee, Erwin Tanuwidjaya, Ralf B Schittenhelm, Andrew M Scott, Hui K Gan, Joseph A Nicolazzo
{"title":"Altered Abundance of Barrier-Related Proteins in Brain Microvascular Endothelial Cells of the GL261 Mouse Model of Glioblastoma.","authors":"Liam M Koehn, Diana Cao, Joel R Steele, Angela Rigopoulos, Ingrid Jg Burvenich, Han Chung-Lee, Erwin Tanuwidjaya, Ralf B Schittenhelm, Andrew M Scott, Hui K Gan, Joseph A Nicolazzo","doi":"10.1021/acs.molpharmaceut.5c00609","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma multiform (GBM) is a brain cancer that has limited treatment options and a high fatality rate, due in part to limited access of chemotherapeutics to the tumor resulting from the restrictive nature of the blood-brain barrier (BBB). The present study characterized the proteome of endothelial cells forming the BBB in a mouse model of GBM, as a way to identify putative transporters that could be exploited to enhance drug delivery in GBM. Female 6-8 week old C57BL/6 mice were intracranially injected with glioma 261 (GL261) cells or underwent a sham injection. After 28-29 days, brain endothelial cells (CD31+/CD45-) from GL261 (GBM-EC) and sham-injected (control-EC) mice were isolated using magnetic-activated cell sorting, and the proteome of cells was compared by untargeted liquid chromatography dual mass spectrometry. GBM-EC had significantly lower abundance of tight junction proteins (e.g., tight junction protein 1, 0.4-fold) and drug-metabolizing enzymes (e.g., glutathione-<i>S</i>-transferase A4, 0.4-fold) compared to control-EC, alongside an up- and down-regulation of drug transporters (e.g., long-chain fatty acid transport protein 4, 5-fold; adenosine triphosphate binding cassette transporter subfamily B member 1A, 0.3-fold). A large, 7-fold up-regulation of the endothelial cell surface receptor melanoma cell adhesion molecule (MCAM) and scavenger receptor class B member 1 (SCARB1) were identified in GBM-EC compared to control-EC. Immunohistochemistry confirmed cerebral endothelial localization of MCAM and SCARB1 in GBM, in addition to nonvascular patterning within the GBM, suggesting these receptors may be targets that could be exploited for drug delivery. The present study identified changes to BBB markers of paracellular permeability, as well as active and receptor-mediated transcellular transport that could present novel avenues to consider to enhance the permeability and GBM access of current and future therapeutics.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.5c00609","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Glioblastoma multiform (GBM) is a brain cancer that has limited treatment options and a high fatality rate, due in part to limited access of chemotherapeutics to the tumor resulting from the restrictive nature of the blood-brain barrier (BBB). The present study characterized the proteome of endothelial cells forming the BBB in a mouse model of GBM, as a way to identify putative transporters that could be exploited to enhance drug delivery in GBM. Female 6-8 week old C57BL/6 mice were intracranially injected with glioma 261 (GL261) cells or underwent a sham injection. After 28-29 days, brain endothelial cells (CD31+/CD45-) from GL261 (GBM-EC) and sham-injected (control-EC) mice were isolated using magnetic-activated cell sorting, and the proteome of cells was compared by untargeted liquid chromatography dual mass spectrometry. GBM-EC had significantly lower abundance of tight junction proteins (e.g., tight junction protein 1, 0.4-fold) and drug-metabolizing enzymes (e.g., glutathione-S-transferase A4, 0.4-fold) compared to control-EC, alongside an up- and down-regulation of drug transporters (e.g., long-chain fatty acid transport protein 4, 5-fold; adenosine triphosphate binding cassette transporter subfamily B member 1A, 0.3-fold). A large, 7-fold up-regulation of the endothelial cell surface receptor melanoma cell adhesion molecule (MCAM) and scavenger receptor class B member 1 (SCARB1) were identified in GBM-EC compared to control-EC. Immunohistochemistry confirmed cerebral endothelial localization of MCAM and SCARB1 in GBM, in addition to nonvascular patterning within the GBM, suggesting these receptors may be targets that could be exploited for drug delivery. The present study identified changes to BBB markers of paracellular permeability, as well as active and receptor-mediated transcellular transport that could present novel avenues to consider to enhance the permeability and GBM access of current and future therapeutics.

GL261小鼠胶质母细胞瘤模型脑微血管内皮细胞中屏障相关蛋白丰度的改变
多形性胶质母细胞瘤(GBM)是一种治疗选择有限且死亡率高的脑癌,部分原因是由于血脑屏障(BBB)的限制性导致化疗药物对肿瘤的获取有限。本研究表征了GBM小鼠模型中形成血脑屏障的内皮细胞的蛋白质组,作为鉴定可能用于增强GBM药物传递的转运蛋白的一种方法。雌性6-8周龄C57BL/6小鼠脑内注射glioma 261 (GL261)细胞或进行假注射。28-29 d后,采用磁激活细胞分选分离GL261 (GBM-EC)和假注射(control-EC)小鼠的脑内皮细胞(CD31+/CD45-),采用非靶向液相色谱双质谱法比较细胞的蛋白质组。与对照组相比,GBM-EC的紧密连接蛋白(如紧密连接蛋白1,0.4倍)和药物代谢酶(如谷胱甘肽- s转移酶A4, 0.4倍)的丰度显著降低,同时药物转运蛋白(如长链脂肪酸转运蛋白4,5倍;三磷酸腺苷结合盒转运蛋白亚家族B成员1A, 0.3倍)的丰度上调和下调。与对照组相比,在GBM-EC中发现内皮细胞表面受体黑色素瘤细胞粘附分子(MCAM)和清扫剂受体B类成员1 (SCARB1)的7倍上调。免疫组织化学证实了MCAM和SCARB1在GBM中的脑内皮定位,以及GBM内的非血管模式,表明这些受体可能是可用于药物递送的靶点。本研究确定了血脑屏障旁细胞通透性标志物的变化,以及活跃的和受体介导的跨细胞运输,这可能为当前和未来的治疗方法提供新的途径,以考虑增强通透性和GBM通路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信