Ray Westenberg, Shaafique Chowdhury, Ryan Cardiff, Kimberly Wennerholm, Alexander S Beliaev, James M Carothers, Pamela Peralta-Yahya
{"title":"以单碳为原料合成氨基酸的无细胞嗜热生物催化剂。","authors":"Ray Westenberg, Shaafique Chowdhury, Ryan Cardiff, Kimberly Wennerholm, Alexander S Beliaev, James M Carothers, Pamela Peralta-Yahya","doi":"10.1021/acssynbio.5c00352","DOIUrl":null,"url":null,"abstract":"<p><p>Bioproduction from one-carbon compounds, such as formate, is an attractive prospect due to reduced energy requirements and the possibility for using CO<sub>2</sub> as a sustainable feedstock. Formate-fixing pathways engineered using <i>Escherichia coli</i> lysate-based cell-free expression (CFE) biocatalysts have the potential to route 100% of feedstock carbon toward chemical synthesis but are undermined by siphoning of in-pathway metabolites and cofactors by the CFE background metabolism. To address this limitation, we engineer a CFE-based thermophilic multienzyme biocatalyst for the synthesis of serine and glycine from formate, bicarbonate, and ammonia. After expression of the thermophilic formate-to-serine pathway in a one-pot reaction, the mesophilic <i>E. coli</i> CFE background machinery is removed by simple heat denaturation, eliminating the siphoning of cofactors, in-pathway metabolites, and products. After bioprocess optimization, including pathway gene expression duration and chemical synthesis temperature, we achieve near stoichiometric conversion of formate and bicarbonate to serine and glycine, reaching 97% of stoichiometric yield. The use of a moderately thermophilic biocatalyst allowed chemical synthesis to take place at mesophilic temperatures, enabling the balance of optimal enzyme activity with minimal metabolite/cofactor thermal degradation. In a fed-batch experiment, the biocatalyst shows sustained chemical synthesis rates for 8 h, paving the way toward a continuous bioprocess. Finally, a sensitivity analysis of cofactor usage revealed that the most expensive cofactors, THF and NADPH, can be reduced by 5-fold without significantly lowering product yields. To the best of our knowledge, this is the first instance of expressing a thermophilic pathway in an <i>E. coli</i> lysate-based CFE system to generate a thermophilic biocatalyst for use at mesophilic temperatures. The CFE-based thermophilic formate-to-serine biocatalyst triples the combined serine and glycine yield previously obtained by a CFE-based mesophilic formate-to-serine biocatalyst (30%), and quadruple the yield obtained by a purified enzyme system (22%). Ultimately, this work opens the door to using <i>E. coli</i> lysate-based CFE for thermophilic biocatalyst generation to achieve high chemical synthesis yields.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cell-Free-Based Thermophilic Biocatalyst for the Synthesis of Amino Acids from One-Carbon Feedstocks.\",\"authors\":\"Ray Westenberg, Shaafique Chowdhury, Ryan Cardiff, Kimberly Wennerholm, Alexander S Beliaev, James M Carothers, Pamela Peralta-Yahya\",\"doi\":\"10.1021/acssynbio.5c00352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bioproduction from one-carbon compounds, such as formate, is an attractive prospect due to reduced energy requirements and the possibility for using CO<sub>2</sub> as a sustainable feedstock. Formate-fixing pathways engineered using <i>Escherichia coli</i> lysate-based cell-free expression (CFE) biocatalysts have the potential to route 100% of feedstock carbon toward chemical synthesis but are undermined by siphoning of in-pathway metabolites and cofactors by the CFE background metabolism. To address this limitation, we engineer a CFE-based thermophilic multienzyme biocatalyst for the synthesis of serine and glycine from formate, bicarbonate, and ammonia. After expression of the thermophilic formate-to-serine pathway in a one-pot reaction, the mesophilic <i>E. coli</i> CFE background machinery is removed by simple heat denaturation, eliminating the siphoning of cofactors, in-pathway metabolites, and products. After bioprocess optimization, including pathway gene expression duration and chemical synthesis temperature, we achieve near stoichiometric conversion of formate and bicarbonate to serine and glycine, reaching 97% of stoichiometric yield. The use of a moderately thermophilic biocatalyst allowed chemical synthesis to take place at mesophilic temperatures, enabling the balance of optimal enzyme activity with minimal metabolite/cofactor thermal degradation. In a fed-batch experiment, the biocatalyst shows sustained chemical synthesis rates for 8 h, paving the way toward a continuous bioprocess. Finally, a sensitivity analysis of cofactor usage revealed that the most expensive cofactors, THF and NADPH, can be reduced by 5-fold without significantly lowering product yields. To the best of our knowledge, this is the first instance of expressing a thermophilic pathway in an <i>E. coli</i> lysate-based CFE system to generate a thermophilic biocatalyst for use at mesophilic temperatures. The CFE-based thermophilic formate-to-serine biocatalyst triples the combined serine and glycine yield previously obtained by a CFE-based mesophilic formate-to-serine biocatalyst (30%), and quadruple the yield obtained by a purified enzyme system (22%). Ultimately, this work opens the door to using <i>E. coli</i> lysate-based CFE for thermophilic biocatalyst generation to achieve high chemical synthesis yields.</p>\",\"PeriodicalId\":26,\"journal\":{\"name\":\"ACS Synthetic Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Synthetic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acssynbio.5c00352\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.5c00352","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Cell-Free-Based Thermophilic Biocatalyst for the Synthesis of Amino Acids from One-Carbon Feedstocks.
Bioproduction from one-carbon compounds, such as formate, is an attractive prospect due to reduced energy requirements and the possibility for using CO2 as a sustainable feedstock. Formate-fixing pathways engineered using Escherichia coli lysate-based cell-free expression (CFE) biocatalysts have the potential to route 100% of feedstock carbon toward chemical synthesis but are undermined by siphoning of in-pathway metabolites and cofactors by the CFE background metabolism. To address this limitation, we engineer a CFE-based thermophilic multienzyme biocatalyst for the synthesis of serine and glycine from formate, bicarbonate, and ammonia. After expression of the thermophilic formate-to-serine pathway in a one-pot reaction, the mesophilic E. coli CFE background machinery is removed by simple heat denaturation, eliminating the siphoning of cofactors, in-pathway metabolites, and products. After bioprocess optimization, including pathway gene expression duration and chemical synthesis temperature, we achieve near stoichiometric conversion of formate and bicarbonate to serine and glycine, reaching 97% of stoichiometric yield. The use of a moderately thermophilic biocatalyst allowed chemical synthesis to take place at mesophilic temperatures, enabling the balance of optimal enzyme activity with minimal metabolite/cofactor thermal degradation. In a fed-batch experiment, the biocatalyst shows sustained chemical synthesis rates for 8 h, paving the way toward a continuous bioprocess. Finally, a sensitivity analysis of cofactor usage revealed that the most expensive cofactors, THF and NADPH, can be reduced by 5-fold without significantly lowering product yields. To the best of our knowledge, this is the first instance of expressing a thermophilic pathway in an E. coli lysate-based CFE system to generate a thermophilic biocatalyst for use at mesophilic temperatures. The CFE-based thermophilic formate-to-serine biocatalyst triples the combined serine and glycine yield previously obtained by a CFE-based mesophilic formate-to-serine biocatalyst (30%), and quadruple the yield obtained by a purified enzyme system (22%). Ultimately, this work opens the door to using E. coli lysate-based CFE for thermophilic biocatalyst generation to achieve high chemical synthesis yields.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.