Cellular &Molecular Immunology最新文献

筛选
英文 中文
Neutrophils in the tumor microenvironment – when a company becomes a crowd 肿瘤微环境中的中性粒细胞--当公司变成人群。
IF 24.1 1区 医学
Cellular &Molecular Immunology Pub Date : 2024-03-08 DOI: 10.1038/s41423-024-01147-9
Zvi G. Fridlender, Zvi Granot
{"title":"Neutrophils in the tumor microenvironment – when a company becomes a crowd","authors":"Zvi G. Fridlender, Zvi Granot","doi":"10.1038/s41423-024-01147-9","DOIUrl":"10.1038/s41423-024-01147-9","url":null,"abstract":"","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"21 4","pages":"313-314"},"PeriodicalIF":24.1,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41423-024-01147-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140064998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mucosal T-cell responses to chronic viral infections: Implications for vaccine design 慢性病毒感染的黏膜 T 细胞反应:对疫苗设计的影响
IF 21.8 1区 医学
Cellular &Molecular Immunology Pub Date : 2024-03-08 DOI: 10.1038/s41423-024-01140-2
Mohammed Al-Talib, Sandra Dimonte, Ian R. Humphreys
{"title":"Mucosal T-cell responses to chronic viral infections: Implications for vaccine design","authors":"Mohammed Al-Talib, Sandra Dimonte, Ian R. Humphreys","doi":"10.1038/s41423-024-01140-2","DOIUrl":"10.1038/s41423-024-01140-2","url":null,"abstract":"Mucosal surfaces that line the respiratory, gastrointestinal and genitourinary tracts are the major interfaces between the immune system and the environment. Their unique immunological landscape is characterized by the necessity of balancing tolerance to commensal microorganisms and other innocuous exposures against protection from pathogenic threats such as viruses. Numerous pathogenic viruses, including herpesviruses and retroviruses, exploit this environment to establish chronic infection. Effector and regulatory T-cell populations, including effector and resident memory T cells, play instrumental roles in mediating the transition from acute to chronic infection, where a degree of viral replication is tolerated to minimize immunopathology. Persistent antigen exposure during chronic viral infection leads to the evolution and divergence of these responses. In this review, we discuss advances in the understanding of mucosal T-cell immunity during chronic viral infections and how features of T-cell responses develop in different chronic viral infections of the mucosa. We consider how insights into T-cell immunity at mucosal surfaces could inform vaccine strategies: not only to protect hosts from chronic viral infections but also to exploit viruses that can persist within mucosal surfaces as vaccine vectors.","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"21 9","pages":"982-998"},"PeriodicalIF":21.8,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41423-024-01140-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140064997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engagement of sialylated glycans with Siglec receptors on suppressive myeloid cells inhibits anticancer immunity via CCL2 抑制性髓系细胞上的 Siglec 受体与ialylated 聚糖结合,可通过 CCL2 抑制抗癌免疫。
IF 24.1 1区 医学
Cellular &Molecular Immunology Pub Date : 2024-03-06 DOI: 10.1038/s41423-024-01142-0
Ronja Wieboldt, Michael Sandholzer, Emanuele Carlini, Chia-wei Lin, Anastasiya Börsch, Andreas Zingg, Didier Lardinois, Petra Herzig, Leyla Don, Alfred Zippelius, Heinz Läubli, Natalia Rodrigues Mantuano
{"title":"Engagement of sialylated glycans with Siglec receptors on suppressive myeloid cells inhibits anticancer immunity via CCL2","authors":"Ronja Wieboldt, Michael Sandholzer, Emanuele Carlini, Chia-wei Lin, Anastasiya Börsch, Andreas Zingg, Didier Lardinois, Petra Herzig, Leyla Don, Alfred Zippelius, Heinz Läubli, Natalia Rodrigues Mantuano","doi":"10.1038/s41423-024-01142-0","DOIUrl":"10.1038/s41423-024-01142-0","url":null,"abstract":"The overexpression of sialic acids on glycans, called hypersialylation, is a common alteration found in cancer cells. Sialylated glycans can enhance immune evasion by interacting with sialic acid-binding immunoglobulin-like lectin (Siglec) receptors on tumor-infiltrating immune cells. Here, we investigated the effect of sialylated glycans and their interaction with Siglec receptors on myeloid-derived suppressor cells (MDSCs). We found that MDSCs derived from the blood of lung cancer patients and tumor-bearing mice strongly express inhibitory Siglec receptors and are highly sialylated. In murine cancer models of emergency myelopoiesis, Siglec-E knockout in myeloid cells resulted in prolonged survival and increased tumor infiltration of activated T cells. Targeting suppressive myeloid cells by blocking Siglec receptors or desialylation strongly reduced their suppressive potential. We further identified CCL2 as a mediator involved in T-cell suppression upon interaction between sialoglycans and Siglec receptors on MDSCs. Our results demonstrated that sialylated glycans inhibit anticancer immunity by modulating CCL2 expression.","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"21 5","pages":"495-509"},"PeriodicalIF":24.1,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41423-024-01142-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140048836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
gp120-derived amyloidogenic peptides form amyloid fibrils that increase HIV-1 infectivity gp120 衍生的淀粉样蛋白肽形成的淀粉样纤维会增加 HIV-1 的感染性。
IF 24.1 1区 医学
Cellular &Molecular Immunology Pub Date : 2024-03-05 DOI: 10.1038/s41423-024-01144-y
Suiyi Tan, Wenjuan Li, Chan Yang, Qingping Zhan, Kunyu Lu, Jun Liu, Yong-Mei Jin, Jin-Song Bai, Lin Wang, Jinqing Li, Zhaofeng Li, Fei Yu, Yu-Ye Li, Yue-Xun Duan, Lu Lu, Tong Zhang, Jiaqi Wei, Lin Li, Yong-Tang Zheng, Shibo Jiang, Shuwen Liu
{"title":"gp120-derived amyloidogenic peptides form amyloid fibrils that increase HIV-1 infectivity","authors":"Suiyi Tan, Wenjuan Li, Chan Yang, Qingping Zhan, Kunyu Lu, Jun Liu, Yong-Mei Jin, Jin-Song Bai, Lin Wang, Jinqing Li, Zhaofeng Li, Fei Yu, Yu-Ye Li, Yue-Xun Duan, Lu Lu, Tong Zhang, Jiaqi Wei, Lin Li, Yong-Tang Zheng, Shibo Jiang, Shuwen Liu","doi":"10.1038/s41423-024-01144-y","DOIUrl":"10.1038/s41423-024-01144-y","url":null,"abstract":"Apart from mediating viral entry, the function of the free HIV-1 envelope protein (gp120) has yet to be elucidated. Our group previously showed that EP2 derived from one β-strand in gp120 can form amyloid fibrils that increase HIV-1 infectivity. Importantly, gp120 contains ~30 β-strands. We examined whether gp120 might serve as a precursor protein for the proteolytic release of amyloidogenic fragments that form amyloid fibrils, thereby promoting viral infection. Peptide array scanning, enzyme degradation assays, and viral infection experiments in vitro confirmed that many β-stranded peptides derived from gp120 can indeed form amyloid fibrils that increase HIV-1 infectivity. These gp120-derived amyloidogenic peptides, or GAPs, which were confirmed to form amyloid fibrils, were termed gp120-derived enhancers of viral infection (GEVIs). GEVIs specifically capture HIV-1 virions and promote their attachment to target cells, thereby increasing HIV-1 infectivity. Different GAPs can cross-interact to form heterogeneous fibrils that retain the ability to increase HIV-1 infectivity. GEVIs even suppressed the antiviral activity of a panel of antiretroviral agents. Notably, endogenous GAPs and GEVIs were found in the lymphatic fluid, lymph nodes, and cerebrospinal fluid (CSF) of AIDS patients in vivo. Overall, gp120-derived amyloid fibrils might play a crucial role in the process of HIV-1 infectivity and thus represent novel targets for anti-HIV therapeutics.","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"21 5","pages":"479-494"},"PeriodicalIF":24.1,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140038842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of NK cell-based cancer immunotherapies through receptor engineering 通过受体工程开发基于 NK 细胞的癌症免疫疗法。
IF 24.1 1区 医学
Cellular &Molecular Immunology Pub Date : 2024-03-05 DOI: 10.1038/s41423-024-01145-x
Audrey Page, Nicolas Chuvin, Jenny Valladeau-Guilemond, Stéphane Depil
{"title":"Development of NK cell-based cancer immunotherapies through receptor engineering","authors":"Audrey Page, Nicolas Chuvin, Jenny Valladeau-Guilemond, Stéphane Depil","doi":"10.1038/s41423-024-01145-x","DOIUrl":"10.1038/s41423-024-01145-x","url":null,"abstract":"Natural killer (NK) cell-based immunotherapies are attracting increasing interest in the field of cancer treatment. Early clinical trials have shown promising outcomes, alongside satisfactory product efficacy and safety. Recent developments have greatly increased the therapeutic potential of NK cells by endowing them with enhanced recognition and cytotoxic capacities. This review focuses on surface receptor engineering in NK cell therapy and discusses its impact, challenges, and future directions. Most approaches are based on engineering with chimeric antigen receptors to allow NK cells to target specific tumor antigens independent of human leukocyte antigen restriction. This approach has increased the precision and potency of NK-mediated recognition and elimination of cancer cells. In addition, engineering NK cells with T-cell receptors also mediates the recognition of intracellular epitopes, which broadens the range of target peptides. Indirect tumor peptide recognition by NK cells has also been improved by optimizing immunoglobulin constant fragment receptor expression and signaling. Indeed, engineered NK cells have an improved ability to recognize and destroy target cells coated with specific antibodies, thereby increasing their antibody-dependent cellular cytotoxicity. The ability of NK cell receptor engineering to promote the expansion, persistence, and infiltration of transferred cells in the tumor microenvironment has also been explored. Receptor-based strategies for sustained NK cell functionality within the tumor environment have also been discussed, and these strategies providing perspectives to counteract tumor-induced immunosuppression. Overall, receptor engineering has led to significant advances in NK cell-based cancer immunotherapies. As technical challenges are addressed, these innovative treatments will likely reshape cancer immunotherapy.","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"21 4","pages":"315-331"},"PeriodicalIF":24.1,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41423-024-01145-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140038841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Tissue-resident macrophages exacerbate lung injury after remote sterile damage 作者更正:组织驻留的巨噬细胞会加重远端无菌损伤后的肺损伤。
IF 24.1 1区 医学
Cellular &Molecular Immunology Pub Date : 2024-03-01 DOI: 10.1038/s41423-024-01139-9
Hanhui Zhong, Jingjing Ji, Jinling Zhuang, Ziying Xiong, Pengyun Xie, Xiaolei Liu, Jundi Zheng, Wangli Tian, Xiaoyang Hong, Jing Tang
{"title":"Author Correction: Tissue-resident macrophages exacerbate lung injury after remote sterile damage","authors":"Hanhui Zhong, Jingjing Ji, Jinling Zhuang, Ziying Xiong, Pengyun Xie, Xiaolei Liu, Jundi Zheng, Wangli Tian, Xiaoyang Hong, Jing Tang","doi":"10.1038/s41423-024-01139-9","DOIUrl":"10.1038/s41423-024-01139-9","url":null,"abstract":"","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"21 4","pages":"414-415"},"PeriodicalIF":24.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41423-024-01139-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140012319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two distinct subpopulations of marginal zone B cells exhibit differential antibody-producing capacities and radioresistance 边缘区 B 细胞的两个不同亚群表现出不同的抗体生成能力和放射抗性。
IF 24.1 1区 医学
Cellular &Molecular Immunology Pub Date : 2024-03-01 DOI: 10.1038/s41423-024-01126-0
Sujin Lee, Yeunjung Ko, Hyun Woo Lee, Won Joon Oh, Hun Gi Hong, Dinuka Ariyaratne, Se Jin Im, Tae Jin Kim
{"title":"Two distinct subpopulations of marginal zone B cells exhibit differential antibody-producing capacities and radioresistance","authors":"Sujin Lee, Yeunjung Ko, Hyun Woo Lee, Won Joon Oh, Hun Gi Hong, Dinuka Ariyaratne, Se Jin Im, Tae Jin Kim","doi":"10.1038/s41423-024-01126-0","DOIUrl":"10.1038/s41423-024-01126-0","url":null,"abstract":"Marginal zone (MZ) B cells, which are splenic innate-like B cells that rapidly secrete antibodies (Abs) against blood-borne pathogens, are composed of heterogeneous subpopulations. Here, we showed that MZ B cells can be divided into two distinct subpopulations according to their CD80 expression levels. CD80high MZ B cells exhibited greater Ab-producing, proliferative, and IL-10-secreting capacities than did CD80low MZ B cells. Notably, CD80high MZ B cells survived 2-Gy whole-body irradiation, whereas CD80low MZ B cells were depleted by irradiation and then repleted with one month after irradiation. Depletion of CD80low MZ B cells led to accelerated development of type II collagen (CII)-induced arthritis upon immunization with bovine CII. CD80high MZ B cells exhibited higher expression of genes involved in proliferation, plasma cell differentiation, and the antioxidant response. CD80high MZ B cells expressed more autoreactive B cell receptors (BCRs) that recognized double-stranded DNA or CII, expressed more immunoglobulin heavy chain sequences with shorter complementarity-determining region 3 sequences, and included more clonotypes with no N-nucleotides or with B-1a BCR sequences than CD80low MZ B cells. Adoptive transfer experiments showed that CD21+CD23+ transitional 2 MZ precursors preferentially generated CD80low MZ B cells and that a proportion of CD80low MZ B cells were converted into CD80high MZ B cells; in contrast, CD80high MZ B cells stably remained CD80high MZ B cells. In summary, MZ B cells can be divided into two subpopulations according to their CD80 expression levels, Ab-producing capacity, radioresistance, and autoreactivity, and these findings may suggest a hierarchical composition of MZ B cells with differential stability and BCR specificity.","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"21 4","pages":"393-408"},"PeriodicalIF":24.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139995754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting PHGDH reverses the immunosuppressive phenotype of tumor-associated macrophages through α-ketoglutarate and mTORC1 signaling 通过α-酮戊二酸和mTORC1信号转导,靶向PHGDH可逆转肿瘤相关巨噬细胞的免疫抑制表型。
IF 24.1 1区 医学
Cellular &Molecular Immunology Pub Date : 2024-02-27 DOI: 10.1038/s41423-024-01134-0
Zhengnan Cai, Wan Li, Sonja Hager, Jayne Louise Wilson, Leila Afjehi-Sadat, Elke H. Heiss, Thomas Weichhart, Petra Heffeter, Wolfram Weckwerth
{"title":"Targeting PHGDH reverses the immunosuppressive phenotype of tumor-associated macrophages through α-ketoglutarate and mTORC1 signaling","authors":"Zhengnan Cai, Wan Li, Sonja Hager, Jayne Louise Wilson, Leila Afjehi-Sadat, Elke H. Heiss, Thomas Weichhart, Petra Heffeter, Wolfram Weckwerth","doi":"10.1038/s41423-024-01134-0","DOIUrl":"10.1038/s41423-024-01134-0","url":null,"abstract":"Phosphoglycerate dehydrogenase (PHGDH) has emerged as a crucial factor in macromolecule synthesis, neutralizing oxidative stress, and regulating methylation reactions in cancer cells, lymphocytes, and endothelial cells. However, the role of PHGDH in tumor-associated macrophages (TAMs) is poorly understood. Here, we found that the T helper 2 (Th2) cytokine interleukin-4 and tumor-conditioned media upregulate the expression of PHGDH in macrophages and promote immunosuppressive M2 macrophage activation and proliferation. Loss of PHGDH disrupts cellular metabolism and mitochondrial respiration, which are essential for immunosuppressive macrophages. Mechanistically, PHGDH-mediated serine biosynthesis promotes α-ketoglutarate production, which activates mTORC1 signaling and contributes to the maintenance of an M2-like macrophage phenotype in the tumor microenvironment. Genetic ablation of PHGDH in macrophages from tumor-bearing mice results in attenuated tumor growth, reduced TAM infiltration, a phenotypic shift of M2-like TAMs toward an M1-like phenotype, downregulated PD-L1 expression and enhanced antitumor T-cell immunity. Our study provides a strong basis for further exploration of PHGDH as a potential target to counteract TAM-mediated immunosuppression and hinder tumor progression.","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"21 5","pages":"448-465"},"PeriodicalIF":24.1,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41423-024-01134-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139971112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NLRP3 inflammasome activation and NETosis positively regulate each other and exacerbate proinflammatory responses: implications of NETosis inhibition for acne skin inflammation treatment NLRP3 炎症小体激活与 NETosis 相互正向调节并加剧促炎反应:抑制 NETosis 对痤疮皮肤炎症治疗的意义
IF 24.1 1区 医学
Cellular &Molecular Immunology Pub Date : 2024-02-26 DOI: 10.1038/s41423-024-01137-x
Hyo Jeong Kim, Yun Sang Lee, Bok-Soon Lee, Chang-Hak Han, Sang Gyu Kim, Chul-Ho Kim
{"title":"NLRP3 inflammasome activation and NETosis positively regulate each other and exacerbate proinflammatory responses: implications of NETosis inhibition for acne skin inflammation treatment","authors":"Hyo Jeong Kim, Yun Sang Lee, Bok-Soon Lee, Chang-Hak Han, Sang Gyu Kim, Chul-Ho Kim","doi":"10.1038/s41423-024-01137-x","DOIUrl":"10.1038/s41423-024-01137-x","url":null,"abstract":"Inflammasomes are multiprotein complexes involved in the host immune response to pathogen infections. Thus, inflammasomes participate in many conditions, such as acne. Recently, it was shown that NETosis, a type of neutrophil cell death, is induced by bacterial infection and is involved in inflammatory diseases such as delayed wound healing in patients with diabetes. However, the relationship between inflammasomes and NETosis in the pathogenesis of inflammatory diseases has not been well studied. In this study, we determined whether NETosis is induced in P. acnes-induced skin inflammation and whether activation of the nucleotide-binding domain, leucine-rich family, and pyrin domain-containing-3 (NLRP3) inflammasome is one of the key factors involved in NETosis induction in a mouse model of acne skin inflammation. We found that NETosis was induced in P. acnes-induced skin inflammation in mice and that inhibition of NETosis ameliorated P. acnes-induced skin inflammation. In addition, our results demonstrated that inhibiting inflammasome activation could suppress NETosis induction in mouse skin. These results indicate that inflammasomes and NETosis can interact with each other to induce P. acnes-induced skin inflammation and suggest that targeting NETosis could be a potential treatment for inflammasome-mediated diseases as well as NETosis-related diseases.","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"21 5","pages":"466-478"},"PeriodicalIF":24.1,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139968449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coming of age: the formation and function of age-associated B cells 成年:与年龄有关的 B 细胞的形成和功能
IF 24.1 1区 医学
Cellular &Molecular Immunology Pub Date : 2024-02-26 DOI: 10.1038/s41423-024-01143-z
Ke Rui, Nan Che, Kongyang Ma, Hejian Zou, Fan Xiao, Liwei Lu
{"title":"Coming of age: the formation and function of age-associated B cells","authors":"Ke Rui, Nan Che, Kongyang Ma, Hejian Zou, Fan Xiao, Liwei Lu","doi":"10.1038/s41423-024-01143-z","DOIUrl":"10.1038/s41423-024-01143-z","url":null,"abstract":"","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"21 4","pages":"311-312"},"PeriodicalIF":24.1,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139968699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信