{"title":"Energy and exergy analysis of primary steam superheating effects on the steam ejector applied in the solar renewable refrigeration cycle in the presence of spontaneous nucleation","authors":"Han zhang Wang","doi":"10.1515/cppm-2023-0038","DOIUrl":"https://doi.org/10.1515/cppm-2023-0038","url":null,"abstract":"Abstract The generator energy consumption in the renewable refrigeration cycles is supplied by solar energy, geothermal energy and waste heat. The thermal energy of low grade can be utilized to superheat the vapour in a generator of the refrigeration cycle. The effect of primary flow superheating was examined on the renewable refrigeration cycle performance using the wet steam model in the ejector. The vapour’s degree of superheating was selected in the 0–100 K range. The superheating level effects were investigated on parameters (wet steam, entrainment ratio, energy consumption, COP, second law efficiency and exergy destruction). The aim of this study is a comprehensive evaluation of the effect of superheat on the ejector refrigeration cycle and the flow behavior in the steam ejector simultaneously. The results represented that superheating the inlet steam in the primary nozzle weakens the spontaneous condensation intensity and delays the condensation shock, the combining process between the secondary flow and the primary flow is improved, and the entrainment ratio is increased, the generator energy consumption and the efficiency of the second law are decreased, the exergy destruction in the ejector is reduced, and the total exergy destruction of the refrigeration cycle is increased. Considering the second law efficiency, COP, the entrainment ratio and the energy consumption, a temperature of 40° of the superheat was achieved as the best degree of the superheat in this cycle that in comparison to the state without superheating, the entrainment ratio and COP are increased by 4.4 % and 1 %, the second law efficiency and the generator energy consumption are reduced by 19.5 % and 1.6 %, respectively.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"20 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135216076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Solar driven desalination system for power and desalination water production by concentrated PVT and MED system","authors":"Xiaochuan Zhang","doi":"10.1515/cppm-2023-0044","DOIUrl":"https://doi.org/10.1515/cppm-2023-0044","url":null,"abstract":"Abstract In this paper, a thermodynamic study of the combination of Concentrated Photovoltaic Thermal (CPVT) and Multi Effect Desalination (MED) system was conducted. CPVT produces electricity, and the heat produced in CPVT is used for the MED system. Engineering Equation Software (EES) was utilized to simulate this system. The effect of CPVT parameters (area, concentration ratio, and average solar radiation) and MED parameters (effect number and temperature of heating steam) were investigated on the produced heat, produced power, exergy destruction, total mass flow rate (FR) of desalinated water, total FR of feed water, heating steam FR and total brine FR. The range of changes for CPVT surface, concentration ratio, and average solar radiation was considered from 2000 m 2 to 20000 m 2 , from 5 to 15 and from 400 W/m 2 to 1100 W/m 2 , respectively. Based on obtained results, as the surface area of the solar panel, the ratio of concentration, and average solar radiation increase, the heat produced increases. Transferring this heat to the MED unit increases the total FR of desalinated water. But it has no significant effect on the Gain ratio (GOR). As the surface area of the solar panel increases from 10000 m 2 to 12000 m 2 , the average radiation intensity increases from 800 W/m 2 to 1000 W/m 2 , and the concentration ratio increases from 10 to 12 in effect the number of 4 and steam temperature of 70 °C, the total mass FR of desalinated water increases by 29 %, 23 %, and 20 %, respectively.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"60 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135365751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical investigation of the effects of dry gas model and wet steam model in solar-driven refrigeration ejector system","authors":"Honglun Cong, Jiao Zhang","doi":"10.1515/cppm-2023-0042","DOIUrl":"https://doi.org/10.1515/cppm-2023-0042","url":null,"abstract":"Abstract Nowadays, the use of equipment with little pollution is essential due to the increase in the planet’s temperature. Ejectors are considered one of the equipment with no pollution, and their failure rate is low due to the lack of moving parts. Also, scholars have recently focused on improving the efficiency of industrial equipment. The use of accurate modeling is required to improve steam ejector performance. In a steam ejector, non-equilibrium condensation creates a two-phase flow situation. The wet steam model, used in this study, characterizes this two-phase flow. The study’s objective was to compare this wet steam model with the dry gas model. In the wet steam model, the liquid mass fraction is 0.25, and its calculated entrainment ratio is lower than the dry gas model, closely matching experimental observations. The dry gas model reaches a maximum Mach number of about 5, while the wet steam model approximates 4. A significant temperature difference exists between the two models, with the dry gas model indicating lower temperatures compared to the wet steam model. Diagonal shocks and expansion waves are evident in the mixing chamber, fixed cross-section, and diffuser. These phenomena occur with greater intensity and a slight delay in the wet steam model compared to the dry gas model.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"184 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136078259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Energy, exergy, and economic analyses and optimization of a deethanizer tower of a petrochemical plant","authors":"Mingguang Yao","doi":"10.1515/cppm-2023-0012","DOIUrl":"https://doi.org/10.1515/cppm-2023-0012","url":null,"abstract":"Abstract The distillation tower’s reboiler is one of the largest energy consumers in petrochemical facilities, and reducing its energy consumption is a crucial issue. This study proposes two optimal methods, namely Direct Vapor Recompression (DVR) and External Vapor Recompression (EVR), to reduce the consumption of cold and hot utilities in a petrochemical deethanizer tower. The Pars petrochemical in Iran is taken as a case study, and the proposed methods are compared with the base case using energy, exergy, and economic approaches, simulated through Aspen HYSYS software in the steady-state design conditions. Exergy analysis reveals that the EVR and DVR methods reduce the exergy destruction of the deethanizer tower by about 70.06 % and 67.29 %, respectively, compared to the base case. Moreover, the EVR method allows for complete recycling of low-pressure vapor, reducing the total exergy destruction rate from 0.871 to 0.261 GJ/t ethane . The feed separation cost for the base case, DVR, and EVR are estimated to be around 28 $/kg feed , 21.57 $/kg feed , and 21.14 $/kg feed , respectively. The EVR method results in reduced utility and ethane separation cost rates from 5.153 to 3.274 $/t ethane and 17.64 to 15.78 $/year. Overall, the findings suggest that both DVR and EVR methods are effective in reducing the energy consumption and costs associated with deethanizer tower operations. Moreover, real-time optimization techniques can be developed to monitor and adjust the deethanizer tower’s operating parameters, such as feed flow rate, reboiler duty, and reflux ratio.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136057657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Frontmatter","authors":"","doi":"10.1515/cppm-2023-frontmatter5","DOIUrl":"https://doi.org/10.1515/cppm-2023-frontmatter5","url":null,"abstract":"","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136160423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patrick Franke, Iman Shabanilemraski, Markus Schubert, Uwe Hampel, Eugeny Y. Kenig
{"title":"A new approach to model the fluid dynamics in sandwich packings","authors":"Patrick Franke, Iman Shabanilemraski, Markus Schubert, Uwe Hampel, Eugeny Y. Kenig","doi":"10.1515/cppm-2023-0054","DOIUrl":"https://doi.org/10.1515/cppm-2023-0054","url":null,"abstract":"Abstract Sandwich packings represent new separation column internals, with a potential to intensify mass transfer. They comprise two conventional structured packings with different specific geometrical surface areas. In this work, the complex fluid dynamics in sandwich packings is modeled using a novel approach based on a one-dimensional, steady momentum balance of the liquid and gas phases. The interactions between the three present phases (gas, liquid, and solid) are considered by closures incorporated into the momentum balance. The formulation of these closures is derived from two fluid-dynamic analogies for the film and froth flow patterns. The adjustable parameters in the closures are regressed for the film flow using dry pressure drop measurements and liquid hold-up data in trickle flow conditions. For the froth flow, the tuning parameters are fitted to overall pressure drop measurements and local liquid hold-up data acquired from ultra-fast X-ray tomography (UFXCT). The model predicts liquid hold-up and pressure drop data with an average relative deviation of 16.4 % and 19 %, respectively. Compared to previous fluid dynamic models for sandwich packings, the number of adjustable parameters could be reduced while maintaining comparable accuracy.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136264239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Removal efficiency of organic chloride from naphtha fraction using micro and nano-γ-Al<sub>2</sub>O<sub>3</sub> sintered adsorbents","authors":"Behnam Hosseingholilou, Samad Arjang, Majid Saidi","doi":"10.1515/cppm-2023-0064","DOIUrl":"https://doi.org/10.1515/cppm-2023-0064","url":null,"abstract":"Abstract This research examines the removal efficiency of organic chloride (OC) compounds from the naphtha fraction of polluted crude oil (CO) using sintered micro and nano γ-Al 2 O 3 at a consistent temperature of 30 °C. The adsorbents were characterized through BET, SEM-EDS, and XRD analyses. When utilizing micro-adsorbents to eliminate OC components from naphtha fraction samples containing initial contaminant concentrations of 105 and 8.5 mg/L, the maximum removal efficiency reached only 28 % and 56 %, respectively. In contrast, the use of nano-based adsorbents resulted in significantly higher adsorption percentages, exceeding 45 % and 96 % for the same two samples, respectively. Equilibrium investigations revealed that the Freundlich isotherm model yielded a superior match for the adsorption equilibrium data for the nano-adsorbents case, while the Langmuir model accurately characterized the data for the micro-adsorbents. Kinetic data analysis indicated that the adsorption kinetics for nano-adsorbents followed the pseudo-second-order model, while the micro-adsorbents obeyed the intra-particle diffusion mechanism. Overall, these findings suggest that sintered γ-Al 2 O 3 nanoparticles (NPs) are more effective than microparticles (MPs) for the adsorptive removal of organic chlorides (OCs) from crude oil’s naphtha distillate.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135736776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mathematical modelling of water-based biogas scrubber operating at digester pressure","authors":"S. Saini, M. Rane","doi":"10.1515/cppm-2022-0082","DOIUrl":"https://doi.org/10.1515/cppm-2022-0082","url":null,"abstract":"Abstract The socio-economic feasibility of biogas as a renewable source of energy has been analyzed for the energy security of India. The impact of Indian government schemes such as the National Biogas and Manure Management Programme (NBMMP) for the implementation of Bioenergy has been discussed in detail. The feasibility of a water-based scrubber (high as well as low pressure) for Bio-methane production in the Indian scenario was analyzed. Theoretical modeling for Steady-State Digester Pressure Water-based Biogas Scrubber (DP-WBS) was performed using the Sum Rate Method. Design parameters for a DP-WBS-based scrubber having a capacity of 60 Nm3/h were optimized at the digester pressure of 110 mm of the Water Column (WC). Modeling for raw biogas (CH4 64 %, CO2 30 %, H2S 1000 ppm) scrubbing was done with and without water recirculation. Sensitivity analysis shows that a 90 m3/h water flow rate and a total of 7 theoretical stages are required to reduce the CO2 concentration in biogas from 30 % to <2.58 % and H2S concentration from 1000 ppm to <20 ppm. H2S removal efficiency in the scrubber was found to be highly dependent on operating conditions at the regeneration section.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44611143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Parameter estimation in non-linear chemical processes: an opposite point-based differential evolution (OPDE) approach","authors":"Swati Yadav, Rakesh Angira","doi":"10.1515/cppm-2022-0044","DOIUrl":"https://doi.org/10.1515/cppm-2022-0044","url":null,"abstract":"Abstract In recent years, evolutionary algorithms have been gaining popularity for finding optimal solutions to non-linear multimodal problems encountered in many engineering disciplines. Differential evolution (DE), an evolutionary algorithm, is a novel optimization method capable of handling nondifferentiable, non-linear, and multimodal objective functions. DE is an efficient, effective, and robust evolutionary optimization method. Still, DE takes large computational time to optimize the computationally expensive objective functions. Therefore, an attempt to speed up DE is considered necessary. This paper introduces a modification to the original DE that enhances the convergence rate without compromising solution quality. The proposed opposite point-based differential evolution (OPDE) algorithm utilizes opposite point-based population initialization, in addition to random initialization. Such an improvement reduces computational effort. The OPDE has been applied to benchmark test functions and high-dimensional non-linear chemical engineering problems. The proposed method of population initialization accelerates the convergence speed of DE, as indicated by the results obtained using benchmark test functions and non-linear chemical engineering problems.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43392472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Yadav, Bushra Khatoon, Shabih -Ul-Hasan, M. S. Alam
{"title":"Hydrodynamics of shear thinning fluid in a square microchannel: a numerical approach","authors":"S. Yadav, Bushra Khatoon, Shabih -Ul-Hasan, M. S. Alam","doi":"10.1515/cppm-2022-0076","DOIUrl":"https://doi.org/10.1515/cppm-2022-0076","url":null,"abstract":"Abstract In this present work, a numerical study was conducted for the formation of a slug bubble for shear thinning non-Newtonian fluid in a cross-junction 2-D square horizontal microchannel. Carboxymethyl cellulose (CMC) of concentration 0.2 (w/w%) percent was used as a continuous phase that shows the shear thinning behavior of non-Newtonian fluid and Nitrogen (N2) was used as the discrete phase. The pressure-based double precision solver was used in ANSYS FLUENT 2021 R2 with the volume of fluid (VOF) method. The finite volume method is applied for the discretization of the continuity and momentum equation. This article also focuses on the fluctuation of static pressure, mechanism of slug, annular, and churn annular flow i.e., obtained by the variation in the inlet velocities. On the other hand, a concept that was applied in this work was also validated with the prior literature data.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46733396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}