{"title":"Mathematical modelling of water-based biogas scrubber operating at digester pressure","authors":"S. Saini, M. Rane","doi":"10.1515/cppm-2022-0082","DOIUrl":null,"url":null,"abstract":"Abstract The socio-economic feasibility of biogas as a renewable source of energy has been analyzed for the energy security of India. The impact of Indian government schemes such as the National Biogas and Manure Management Programme (NBMMP) for the implementation of Bioenergy has been discussed in detail. The feasibility of a water-based scrubber (high as well as low pressure) for Bio-methane production in the Indian scenario was analyzed. Theoretical modeling for Steady-State Digester Pressure Water-based Biogas Scrubber (DP-WBS) was performed using the Sum Rate Method. Design parameters for a DP-WBS-based scrubber having a capacity of 60 Nm3/h were optimized at the digester pressure of 110 mm of the Water Column (WC). Modeling for raw biogas (CH4 64 %, CO2 30 %, H2S 1000 ppm) scrubbing was done with and without water recirculation. Sensitivity analysis shows that a 90 m3/h water flow rate and a total of 7 theoretical stages are required to reduce the CO2 concentration in biogas from 30 % to <2.58 % and H2S concentration from 1000 ppm to <20 ppm. H2S removal efficiency in the scrubber was found to be highly dependent on operating conditions at the regeneration section.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2022-0082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The socio-economic feasibility of biogas as a renewable source of energy has been analyzed for the energy security of India. The impact of Indian government schemes such as the National Biogas and Manure Management Programme (NBMMP) for the implementation of Bioenergy has been discussed in detail. The feasibility of a water-based scrubber (high as well as low pressure) for Bio-methane production in the Indian scenario was analyzed. Theoretical modeling for Steady-State Digester Pressure Water-based Biogas Scrubber (DP-WBS) was performed using the Sum Rate Method. Design parameters for a DP-WBS-based scrubber having a capacity of 60 Nm3/h were optimized at the digester pressure of 110 mm of the Water Column (WC). Modeling for raw biogas (CH4 64 %, CO2 30 %, H2S 1000 ppm) scrubbing was done with and without water recirculation. Sensitivity analysis shows that a 90 m3/h water flow rate and a total of 7 theoretical stages are required to reduce the CO2 concentration in biogas from 30 % to <2.58 % and H2S concentration from 1000 ppm to <20 ppm. H2S removal efficiency in the scrubber was found to be highly dependent on operating conditions at the regeneration section.
期刊介绍:
Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.