Chemical Engineering and Processing - Process Intensification最新文献

筛选
英文 中文
Process intensification in the direct contact membrane distillation (DCMD) desalination by patterning membrane surface: A CFD study 通过膜表面图案化强化直接接触膜蒸馏(DCMD)脱盐过程:CFD 研究
IF 3.8 3区 工程技术
Chemical Engineering and Processing - Process Intensification Pub Date : 2024-10-13 DOI: 10.1016/j.cep.2024.110027
{"title":"Process intensification in the direct contact membrane distillation (DCMD) desalination by patterning membrane surface: A CFD study","authors":"","doi":"10.1016/j.cep.2024.110027","DOIUrl":"10.1016/j.cep.2024.110027","url":null,"abstract":"<div><div>In this research, the impact of pattern geometry on the intensification of the performance of surface patterned membranes for saline water desalination by direct contact membrane distillation (DCMD) is investigated by computational fluid dynamics (CFD) simulation. The Comsol Multiphysics software was applied to solve the governing transport equations for heat, momentum, and mass transfer. The result of the model was validated by the published experimental data, and the maximum deviation was &lt;10 %. The target was to maximize the permeate flux by altering surface pattern geometry and dimensions. Based on the previous studies, a prism pattern was chosen in this work, and the influences of pattern type (3 types), pattern dimension (25–150 µm valley depth), and the distance between the valleys (0–400 µm) were studied on the temperature polarization coefficient (TPC) and DCMD permeate flux. The results showed that the pattern with a valley depth of 25 µm and a distance between the valleys of 300 µm had the best performance in DCMD operation. In this situation and feed temperature of 80 °C, a TPC of 0.78 and a water flux of 49.3 kg m<sup>-12</sup>.h were attained. The characteristics of flow close to the patterned membrane surface were also investigated, and it was observed that there are weak shear stresses in the lower zone of the valleys, while stronger shear stresses are created in the upper regions that are responsible for improving the TPC and water flux in the patterned membranes.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance of a RuCs/MgO catalyst coated on additive manufactured support structures via electrophoretic deposition for ammonia synthesis 通过电泳沉积在添加剂制造的支撑结构上涂覆 RuCs/MgO 催化剂用于合成氨的性能
IF 3.8 3区 工程技术
Chemical Engineering and Processing - Process Intensification Pub Date : 2024-10-11 DOI: 10.1016/j.cep.2024.110019
{"title":"Performance of a RuCs/MgO catalyst coated on additive manufactured support structures via electrophoretic deposition for ammonia synthesis","authors":"","doi":"10.1016/j.cep.2024.110019","DOIUrl":"10.1016/j.cep.2024.110019","url":null,"abstract":"<div><div>This work investigates the electrophoretic deposition of a catalytic coating on so-called fluid guiding elements (FGE) with a ruthenium-based catalyst for use in ammonia synthesis reactors. FGE are additive manufactured metallic pipe inserts that have shown to enhance the heat transfer compared to empty pipes by dividing the fluid flow and alternately guiding the partial flows to the wall. Consequently, they could improve the performance of temperature sensitive structured catalytic systems. To be able to demonstrate the degree of process intensification, the required steps to enable the deposition of a reference catalyst for ammonia synthesis are developed. Further, the distribution of catalytically active compounds is characterized. The catalytic activity is assessed in a plug flow reactor under pressures up to 5<!--> <!-->MPa and compared against a fixed bed from the same batch. The expected activity from the reference catalyst is calculated by a kinetic rate expression. The coating process does not affect catalytic activity, but a steady deactivation and high sensitivity to feed gas impurities are observed. Possible mechanisms for the deactivation are examined and discussed.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elucidating flow-directed 98% CO2 absorption using millimeter-sized coiled flow inverters: Nanocellulose-aided sustainable scope 利用毫米级卷流逆变器阐明流动定向吸收 98% 的二氧化碳:纳米纤维素辅助的可持续范围
IF 3.8 3区 工程技术
Chemical Engineering and Processing - Process Intensification Pub Date : 2024-10-10 DOI: 10.1016/j.cep.2024.110022
{"title":"Elucidating flow-directed 98% CO2 absorption using millimeter-sized coiled flow inverters: Nanocellulose-aided sustainable scope","authors":"","doi":"10.1016/j.cep.2024.110022","DOIUrl":"10.1016/j.cep.2024.110022","url":null,"abstract":"<div><div>The Sustainable Development Goals (SDGs) adopted by the United Nations drive the global efforts to discover a sustainable carbon capture method for the reduction of anthropogenic CO<sub>2</sub> emissions. Concentrated alkanolamine solutions are being used as CO<sub>2</sub> capture mediums for batch processes amid several disadvantages, such as energy intensiveness and poor efficiency. In this work, millimeter-sized coiled flow inverters (CFI) have been explored as a point-source CO<sub>2</sub> capture tool for highly efficient, continuous operations. Solvent and CO<sub>2</sub> gas flow rates are found to dictate the slug flow regime and, more specfically, slug lengths. High interfacial area and residence time remain the driving factors for enhanced CO<sub>2</sub> capture using CFI. About 98% CO<sub>2</sub> absorption efficiency has been achieved for 3% aqueous diethanolamine solution in CFI . The efficacy of nanocellulose, a sustainable nanomaterial has been unearthed for CO<sub>2</sub> capture at low flow rate.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142442206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogenation process intensification of 2-nitro-4-acetylamino anisole by HiGee technology 利用 HiGee 技术强化 2-硝基-4-乙酰氨基苯甲醚的氢化过程
IF 3.8 3区 工程技术
Chemical Engineering and Processing - Process Intensification Pub Date : 2024-10-09 DOI: 10.1016/j.cep.2024.110020
{"title":"Hydrogenation process intensification of 2-nitro-4-acetylamino anisole by HiGee technology","authors":"","doi":"10.1016/j.cep.2024.110020","DOIUrl":"10.1016/j.cep.2024.110020","url":null,"abstract":"<div><div>The catalytic hydrogenation of 2-nitro-4-acetylamino anisole (NMA) is the main path to synthesize 2-amino-4-acetylamino anisole (AMA), belonging to a typical gas-liquid-solid system. However, the small mass transfer rate of traditional hydrogenation reactor can't match its intrinsic fast reaction rate, resulting in the low hydrogenation efficiency. In this work, a rotating packed bed (RPB) reactor with excellent mass transfer performance was applied for the hydrogenation process intensification of NMA. The characterization analysis of the commercial Raney-Ni catalyst shows that the liquid-solid mass transfer resistance during the reaction process can be ignored, and improving the gas-liquid mass transfer rate is the key to improve the macroscopic reaction rate. The effects of operating conditions (solvent, rotational speed, hydrogen pressure, temperature, and catalyst dosage) on NMA conversion and AMA selectivity were investigated. A macro-kinetic equation of NMA catalytic hydrogenation in the RPB reactor was proposed. Under optimized conditions, the NMA was completely converted in the RPB reactor within 30 min, while it took 4 h in the stirred tank reactor. The overall reaction efficiency of RPB reactor was increased by 87.5 % in comparison with STR. This study provides practical guidance for the industrial application of RPB reactor for gas-liquid-solid hydrogenation.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Jet cavitation-enhanced hydration method for the preparation of magnesium hydroxide 制备氢氧化镁的喷射空化增强水合法
IF 3.8 3区 工程技术
Chemical Engineering and Processing - Process Intensification Pub Date : 2024-10-09 DOI: 10.1016/j.cep.2024.110003
{"title":"Jet cavitation-enhanced hydration method for the preparation of magnesium hydroxide","authors":"","doi":"10.1016/j.cep.2024.110003","DOIUrl":"10.1016/j.cep.2024.110003","url":null,"abstract":"<div><div>During the preparation of magnesium hydroxide via the hydration method, in-situ growth and agglomeration often inhibit the reaction. This study used active magnesium oxide as the raw material and employed jet cavitation technology to enhance the hydration process. Based on the growth process of magnesium hydroxide, the mechanism of jet-enhanced hydration was analyzed. The effects of reaction temperature (<em>T</em>), reaction time (<em>t</em>), solid-liquid ratio (<em>s</em>), and cavitation number (<em>σ</em>) on the hydration rate were investigated. An L<sub>25</sub>(5<sup>4</sup>) orthogonal experiment explored the significance of each factor's impact on the hydration rate. The hydration products were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and a specific surface area analyzer. Results indicate that the factors affecting the hydration rate, in order of significance, are cavitation number &gt; reaction temperature &gt; solid-liquid ratio &gt; reaction time. The optimal process parameters were determined to be a reaction temperature of 70 °C, reaction time of 80 min, solid-liquid ratio of 1:12, and cavitation number of 0.42. Under these conditions, the hydration rate reached 94.87 %, producing well-dispersed lamellar magnesium hydroxide with a narrow particle size distribution (median particle size D50 = 4.511 μm) and a BET specific surface area of 11.345 m²/g.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bubble characteristics in a novel microbubble gas-liquid-solid fluidized bed 新型微气泡气-液-固流化床中的气泡特性
IF 3.8 3区 工程技术
Chemical Engineering and Processing - Process Intensification Pub Date : 2024-10-06 DOI: 10.1016/j.cep.2024.110018
{"title":"Bubble characteristics in a novel microbubble gas-liquid-solid fluidized bed","authors":"","doi":"10.1016/j.cep.2024.110018","DOIUrl":"10.1016/j.cep.2024.110018","url":null,"abstract":"<div><div>The bubble characteristics are critical in gas-liquid-solid fluidized beds and microbubbles significantly enhance mass transfer in multiphase systems. In this work, a novel concept of microbubble gas-liquid-solid fluidized bed is proposed. Telecentric camera is employed to measure and analyze the microbubble characteristics including bubble size and gas holdup in this three-phase fluidized bed. Additionally, solid holdups in the fluidized bed are also examined. The results demonstrate that the bubble size adheres a lognormal distribution and is significantly influenced by superficial gas velocity. Bubble diameter exhibit a relatively uniform distribution in the radial direction. Bubbles exceeding than 1 mm substantially affect local gas holdup, and the microbubble flow promotes a more uniform distribution of local gas holdup in radial position. The average gas holdup deviation is less than 15 % compared to overall gas holdup obtained from pressure drop. Although microbubbles are more abundant, larger bubbles (&gt; 1 mm) contribute more to solid particle fluidization. This paper introduces a methodology for assessing smaller-sized microbubbles in three-phase flow. The hydrodynamic analysis of the microbubble gas-liquid-solid fluidized bed establishes a foundational framework for enhancing gas-liquid mass transfer in fluidized bed.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decentralized control of ideal ternary reactive distillation column with inert 带惰性的理想三元反应蒸馏塔的分散控制
IF 3.8 3区 工程技术
Chemical Engineering and Processing - Process Intensification Pub Date : 2024-10-02 DOI: 10.1016/j.cep.2024.110017
{"title":"Decentralized control of ideal ternary reactive distillation column with inert","authors":"","doi":"10.1016/j.cep.2024.110017","DOIUrl":"10.1016/j.cep.2024.110017","url":null,"abstract":"<div><div>Decentralized control of an ideal hypothetical ternary reactive distillation column with an inert component is explored. Both composition measurement based and temperature inferential control structures are designed using simple heuristic approaches (two and three-point). The three-point composition control structure is proposed for the example RD column for the first time in this work. Although stable closed loop responses are seen for the throughput changes for all, the two-point structures have failed to achieve tight control of the product purity in the bottoms or purity of inert in the distillate for the inert composition changes due to fixed reflux ratio. The performances of the three-point control structures for the inert composition changes are quite satisfactory due to the indirect manipulation of the reflux ratio. The independent manipulation of the reflux rate and distillate (instead of fixed reflux ratio policy) is an important control decision for the successful regulation of the example RD column.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flow characteristics in a horizontal reactor for continuous preparation of carbon nanotubes 用于连续制备碳纳米管的水平反应器中的流动特性
IF 3.8 3区 工程技术
Chemical Engineering and Processing - Process Intensification Pub Date : 2024-10-02 DOI: 10.1016/j.cep.2024.110013
{"title":"Flow characteristics in a horizontal reactor for continuous preparation of carbon nanotubes","authors":"","doi":"10.1016/j.cep.2024.110013","DOIUrl":"10.1016/j.cep.2024.110013","url":null,"abstract":"<div><div>This study focuses on a sophisticated horizontal reactor designed to facilitate the continuous growth of carbon nanotubes (CNTs) through chemical vapor deposition (CVD). Experimental observations reveal that carbon production varies at different locations within the reactor, with higher yields typically found in the middle and rear zones. The flow dynamics within the reactor play a pivotal role in CNT growth, prompting a detailed simulation of the flow field using Computational Fluid Dynamics (CFD). This simulation leverages fluid dynamics principles to assess the impact of various parameters on the flow field, ultimately identifying the optimal operating conditions. Findings indicate that temperature-induced density contrasts create cyclic flow patterns that can negatively affect CNT growth rates. However, the gas flow inside the horizontal continuous preparation reactor can be improved and optimized by adjusting and controlling the preparation parameters. Appropriately lowering the heating temperature and the mole fraction of propylene in inlet 2, within the range of conditions suitable for the growth of CNTs, while minimizing the perturbation of the flow field by the shape of the carriers, can promote more favorable CNTs growth.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stress-blended eddy simulation of flow characteristics in stirred tanks with different curved blade impellers 采用不同曲面叶片叶轮的搅拌槽中流动特性的应力混合涡流模拟
IF 3.8 3区 工程技术
Chemical Engineering and Processing - Process Intensification Pub Date : 2024-10-02 DOI: 10.1016/j.cep.2024.110015
{"title":"Stress-blended eddy simulation of flow characteristics in stirred tanks with different curved blade impellers","authors":"","doi":"10.1016/j.cep.2024.110015","DOIUrl":"10.1016/j.cep.2024.110015","url":null,"abstract":"<div><div>A high-performance impeller is crucial for enhancing material mixing in a stirred tank. In this work, the flow characteristics created by different curved blade impellers including staggered fan-shaped parabolic disc turbine (SFPDT), swept-back parabolic disc turbine (SPDT), asymmetric staggered parabolic disc turbine (ASPDT) and traditional parabolic disc turbine (PDT) in stirred tanks are investigated numerically by using the stress-blended eddy simulation (SBES) model with a sliding mesh approach. After successful validation of prediction accuracy, power characteristics, mean flow, turbulence characteristics, turbulent kinetic energy (TKE) transport, and trailing vortices behaviors of SFPDT, ASPDT, SPDT and PDT in stirred tanks are systematically evaluated. The results show that ASPDT leads to a significant asymmetric distribution in the axial direction for velocity, TKE and trailing vortices, but the radial jet reduces more severely in the radial direction. The fan-shaped geometry constrains the influence of asymmetric staggered structure on the TKE and trailing vortices distribution for SFPDT. The swept-back blade structure of SPDT results in the lowest power number and TKE values level. These results provide a foundation for the further development and application of high-efficiency impellers.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance analysis of photocatalytic reactor with immobilized catalyst for emerging pollutants water treatment using cfd simulation and optimization method 利用 cfd 模拟和优化方法对固定催化剂光催化反应器处理新污染物水的性能分析
IF 3.8 3区 工程技术
Chemical Engineering and Processing - Process Intensification Pub Date : 2024-10-01 DOI: 10.1016/j.cep.2024.110016
{"title":"Performance analysis of photocatalytic reactor with immobilized catalyst for emerging pollutants water treatment using cfd simulation and optimization method","authors":"","doi":"10.1016/j.cep.2024.110016","DOIUrl":"10.1016/j.cep.2024.110016","url":null,"abstract":"<div><div>An annular labyrinth photocatalytic reactor design was optimized to degrade water emerging pollutants by combining CFD modeling and a Box-Benken experimental design with the desirability function method for the optimization. The optimization was performed by minimizing the pollutant degradation time and the reactor operational cost, varying three factors in the experimental design, the fins number in the labyrinth, the thickness of the annular region, and the solution transmittance. The range of variation levels was 5 to 9, 5 mm to 25 mm, and 35 % to 95 % respectively. The intrinsic kinetic model of the salicylic acid degradation used in CFD simulations takes into account the variations of pollutant concentration and light intensity. Results showed that the transmittance was the most significant factor in minimizing both degradation time and energy cost, followed by the annular reactor thickness and the fins number. The desirability method showed that the combination of the optimized reactor levels was 9 fins, thickness of 25 mm, and transmittance of 95 %. To verify the efficiency gain of the optimized reactor, it was compared the degradation time and the energy cost of the optimized reactor with a conventional annular reactor. The efficiency gain was about 53 %.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信