Takahide Matsui, Yuriko Sakamaki, Shu Hiragi, Mitsunori Fukuda
{"title":"VAMP5 and distinct sets of cognate Q-SNAREs mediate exosome release.","authors":"Takahide Matsui, Yuriko Sakamaki, Shu Hiragi, Mitsunori Fukuda","doi":"10.1247/csf.23067","DOIUrl":"10.1247/csf.23067","url":null,"abstract":"<p><p>Small extracellular vesicles (sEVs) are largely classified into two types, plasma-membrane derived sEVs and endomembrane-derived sEVs. The latter type (referred to as exosomes herein) is originated from late endosomes or multivesicular bodies (MVBs). In order to release exosomes extracellularly, MVBs must fuse with the plasma membrane, not with lysosomes. In contrast to the mechanism responsible for MVB-lysosome fusion, the mechanism underlying the MVB-plasma membrane fusion is poorly understood. Here, we systematically analyze soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family proteins and identify VAMP5 as an MVB-localized SNARE protein required for exosome release. Depletion of VAMP5 in HeLa cells impairs exosome release. Mechanistically, VAMP5 mediates exosome release by interacting with SNAP47 and plasma membrane SNARE Syntaxin 1 (STX1) or STX4 to release exosomes. VAMP5 is also found to mediate asymmetric exosome release from polarized Madin-Darby canine kidney (MDCK) epithelial cells through interaction with the distinct sets of Q-SNAREs, suggesting that VAMP5 is a general exosome regulator in both polarized cells and non-polarized cells.Key words: exosome, small extracellular vesicle (sEV), multivesicular body, SNARE, VAMP5.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":" ","pages":"187-198"},"PeriodicalIF":2.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496780/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10231461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"FilGAP, a GAP for Rac1, down-regulates invadopodia formation in breast cancer cells.","authors":"Koji Saito, Sakino Ozawa, Yosuke Chiba, Ruri Takahashi, Ryoya Ogomori, Kojiro Mukai, Tomohiko Taguchi, Hiroyasu Hatakeyama, Yasutaka Ohta","doi":"10.1247/csf.23032","DOIUrl":"10.1247/csf.23032","url":null,"abstract":"<p><p>Invadopodia are protrusive structures that mediate the extracellular matrix (ECM) degradation required for tumor invasion and metastasis. Rho small GTPases regulate invadopodia formation, but the molecular mechanisms of how Rho small GTPase activities are regulated at the invadopodia remain unclear. Here we have identified FilGAP, a GTPase-activating protein (GAP) for Rac1, as a negative regulator of invadopodia formation in tumor cells. Depletion of FilGAP in breast cancer cells increased ECM degradation and conversely, overexpression of FilGAP decreased it. FilGAP depletion promoted the formation of invadopodia with ECM degradation. In addition, FilGAP depletion and Rac1 overexpression increased the emergence of invadopodia induced by epidermal growth factor, whereas FilGAP overexpression suppressed it. Overexpression of GAP-deficient FilGAP mutant enhanced invadopodia emergence as well as FilGAP depletion. The pleckstrin-homology (PH) domain of FilGAP binds phosphatidylinositol 3,4-bisphosphate [PI(3,4)P<sub>2</sub>], which is distributed on membranes of the invadopodia. FilGAP localized to invadopodia in breast cancer cells on the ECM, but FilGAP mutant lacking PI(3,4)P<sub>2</sub>-binding showed low localization. Similarly, the decrease of PI(3,4)P<sub>2</sub> production reduced the FilGAP localization. Our results suggest that FilGAP localizes to invadopodia through its PH domain binding to PI(3,4)P<sub>2</sub> and down-regulates invadopodia formation by inactivating Rac1, inhibiting ECM degradation in invasive tumor cells.Key words: invadopodia, breast carcinoma, Rac1, FilGAP, PI(3,4)P<sub>2</sub>.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":" ","pages":"161-174"},"PeriodicalIF":2.0,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496788/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9860271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IC2 participates in the cooperative activation of outer arm dynein densely attached to microtubules.","authors":"Yusuke Kondo, Tomoka Ogawa, Emiri Kanno, Masafumi Hirono, Takako Kato-Minoura, Ritsu Kamiya, Toshiki Yagi","doi":"10.1247/csf.23044","DOIUrl":"10.1247/csf.23044","url":null,"abstract":"<p><p>Ciliary outer-arm dynein (OAD) consists of heavy chains (HCs), intermediate chains (ICs), and light chains (LCs), of which HCs are the motor proteins that produce force. Studies using the green alga Chlamydomonas have revealed that ICs and LCs form a complex (IC/LC tower) at the base of the OAD tail and play a crucial role in anchoring OAD to specific sites on the microtubule. In this study, we isolated a novel slow-swimming Chlamydomonas mutant deficient in the IC2 protein. This mutation, E279K, is in the third of the seven WD repeat domains. No apparent abnormality was observed in electron microscope observations of axonemes or in SDS-PAGE analyses of dynein subunits. To explore the reason for the lowered motility in this mutant, in vitro microtubule sliding experiments were performed, which revealed that the motor activity of the mutant OAD was lowered. In particular, a large difference was observed between wild type (WT) and the mutant in the microtubule sliding velocity in microtubule bundles formed with the addition of OAD: ~35.3 μm/sec (WT) and ~4.3 μm/sec (mutant). From this and other results, we propose that IC2 in an OAD interacts with the β HC of the adjacent OAD, and that an OAD-OAD interaction is important for efficient beating of cilia and flagella.Key words: cilia, axoneme, dynein heavy chain, cooperativity.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":" ","pages":"175-185"},"PeriodicalIF":2.0,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496786/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9899811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Da Young Shin, Hiroaki Takagi, Michio Hiroshima, Satomi Matsuoka, Masahiro Ueda
{"title":"Sphingomyelin metabolism underlies Ras excitability for efficient cell migration and chemotaxis.","authors":"Da Young Shin, Hiroaki Takagi, Michio Hiroshima, Satomi Matsuoka, Masahiro Ueda","doi":"10.1247/csf.23045","DOIUrl":"10.1247/csf.23045","url":null,"abstract":"<p><p>In eukaryotic motile cells, the active Ras (Ras-GTP)-enriched domain is generated in an asymmetric manner on the cell membrane through the excitable dynamics of an intracellular signaling network. This asymmetric Ras signaling regulates pseudopod formation for both spontaneous random migration and chemoattractant-induced directional migration. While membrane lipids, such as sphingomyelin and phosphatidylserine, contribute to Ras signaling in various cell types, whether they are involved in the Ras excitability for cell motility is unknown. Here we report that functional Ras excitability requires the normal metabolism of sphingomyelin for efficient cell motility and chemotaxis. The pharmacological blockade of sphingomyelin metabolism by an acid-sphingomyelinase inhibitor, fendiline, and other inhibitors suppressed the excitable generation of the stable Ras-GTP-enriched domain. The suppressed excitability failed to invoke enough basal motility to achieve directed migration under shallow chemoattractant gradients. The fendiline-induced defects in Ras excitability, motility and stimulation-elicited directionality were due to an accumulation of sphingomyelin on the membrane, which could be recovered by exogenous sphingomyelinase or phosphatidylserine without changing the expression of Ras. These results indicate a novel regulatory mechanism of the excitable system by membrane lipids, in which sphingomyelin metabolism provides a membrane environment to ensure Ras excitation for efficient cellular motility and chemotaxis.Key words: cell polarity, cell migration, Ras, excitability, sphingomyelin.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":"48 2","pages":"145-160"},"PeriodicalIF":2.0,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496829/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10498759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Two coral fluorescent proteins of distinct colors for sharp visualization of cell-cycle progression.","authors":"Ryoko Ando, Asako Sakaue-Sawano, Keiko Shoda, Atsushi Miyawaki","doi":"10.1247/csf.23028","DOIUrl":"10.1247/csf.23028","url":null,"abstract":"<p><p>We cloned and characterized two new coral fluorescent proteins: h2-3 and 1-41. h2-3 formed an obligate dimeric complex and exhibited bright green fluorescence. On the other hand, 1-41 formed a highly multimeric complex and exhibited dim red fluorescence. We engineered 1-41 into AzaleaB5, a practically useful red-emitting fluorescent protein for cellular labeling applications. We fused h2-3 and AzaleaB5 to the ubiquitination domains of human Geminin and Cdt1, respectively, to generate a new color variant of Fucci (Fluorescent Ubiquitination-based Cell-Cycle Indicator): Fucci5. We found Fucci5 provided more reliable nuclear labeling for monitoring cell-cycle progression than the 1<sup>st</sup> and 2<sup>nd</sup> generations that used mAG/mKO2 and mVenus/mCherry, respectively.Key words: fluorescent protein, cell cycle, time-lapse imaging, flow cytometry.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":"48 2","pages":"135-144"},"PeriodicalIF":1.5,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10958192/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9892932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Proteomic analysis of fatty liver induced by starvation of medaka fish larvae.","authors":"Tomoyo Ikeda, Tokiro Ishikawa, Satoshi Ninagawa, Tetsuya Okada, Masaya Ono, Kazutoshi Mori","doi":"10.1247/csf.23014","DOIUrl":"10.1247/csf.23014","url":null,"abstract":"<p><p>When medaka fish (Oryzias latipes) larvae are grown in the absence of exogenous nutrition, the liver becomes dark and positive to Oil Red O staining from 7 days post-hatch (dph). We determined the mechanism of this starvation-induced development of fatty liver by proteomic analysis using livers obtained from larvae grown in the presence or absence of 2% glucose at 5 dph. Results showed that changes in the expression levels of enzymes involved in glycolysis or the tricarboxylic acid cycle were modest, whereas the expression levels of enzymes involved in amino acid catabolism or β-oxidation of fatty acids were significantly elevated, suggesting that they become major energy sources under starvation conditions. Expression levels of enzymes for the uptake and β-oxidation of fatty acids as well as synthesis of triacylglycerol were elevated, whereas those for the synthesis of cholesterol as well as export of cholesterol and triacylglycerol were decreased under starvation conditions, which explains the accumulation of triacylglycerol in the liver. Our results provide the basis for future research to understand how gene malfunction(s) affects the development of fatty liver, which can lead to nonalcoholic steatohepatitis and then to liver cirrhosis.Key words: amino acid catabolism, β-oxidation, triacylglycerol, cholesterol, export.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":"48 2","pages":"123-133"},"PeriodicalIF":1.5,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10915113/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9842855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Zebrafish imaging reveals hidden oncogenic-normal cell communication during primary tumorigenesis.","authors":"Yukinari Haraoka, Mai Miyake, Tohru Ishitani","doi":"10.1247/csf.23026","DOIUrl":"10.1247/csf.23026","url":null,"abstract":"<p><p>Oncogenic mutations drive tumorigenesis, and single cells with oncogenic mutations act as the tumor seeds that gradually evolve into fully transformed tumors. However, oncogenic cell behavior and communication with neighboring cells during primary tumorigenesis remain poorly understood. We used the zebrafish, a small vertebrate model suitable for in vivo cell biology, to address these issues. We describe the cooperative and competitive communication between oncogenic cells and neighboring cells, as revealed by our recent zebrafish imaging studies. Newly generated oncogenic cells are actively eliminated by neighboring cells in healthy epithelia, whereas oncogenic cells cooperate with their neighbors to prime tumorigenesis in unhealthy epithelia via additional mutations or inflammation. In addition, we discuss the potential of zebrafish in vivo imaging to determine the initial steps of human tumorigenesis.Key words: zebrafish, imaging, cell-cell communication, cell competition, EDAC, senescence, primary tumorigenesis.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":"48 1","pages":"113-121"},"PeriodicalIF":1.5,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10721949/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9663700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cell biology of protein-lipid conjugation.","authors":"Jun-Ichi Sakamaki, Noboru Mizushima","doi":"10.1247/csf.23016","DOIUrl":"10.1247/csf.23016","url":null,"abstract":"<p><p>Protein-lipid conjugation is a widespread modification involved in many biological processes. Various lipids, including fatty acids, isoprenoids, sterols, glycosylphosphatidylinositol, sphingolipids, and phospholipids, are covalently linked with proteins. These modifications direct proteins to intracellular membranes through the hydrophobic nature of lipids. Some of these membrane-binding processes are reversible through delipidation or by reducing the affinity to membranes. Many signaling molecules undergo lipid modification, and their membrane binding is important for proper signal transduction. The conjugation of proteins to lipids also influences the dynamics and function of organellar membranes. Dysregulation of lipidation has been associated with diseases such as neurodegenerative diseases. In this review, we first provide an overview of diverse forms of protein-lipid conjugation and then summarize the catalytic mechanisms, regulation, and roles of these modifications.Key words: lipid, lipidation, membrane, organelle, protein modification.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":"48 1","pages":"99-112"},"PeriodicalIF":1.5,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10721952/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9446792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A conserved WXXE motif is an apical delivery determinant of ABC transporter C subfamily isoforms.","authors":"Md Shajedul Haque, Yoshikazu Emi, Masao Sakaguchi","doi":"10.1247/csf.22049","DOIUrl":"10.1247/csf.22049","url":null,"abstract":"<p><p>ATP-binding cassette transporter isoform C7 (ABCC7), also designated as cystic fibrosis transmembrane conductance regulator (CFTR), is exclusively targeted to the apical plasma membrane of polarized epithelial cells. Although the apical localization of ABCC7 in epithelia is crucial for the Cl<sup>-</sup> excretion into lumens, the mechanism regulating its apical localization is poorly understood. In the present study, an apical localization determinant was identified in the N-terminal 80-amino acid long cytoplasmic region of ABCC7 (NT80). In HepG2 cells, overexpression of NT80 significantly disturbed the apical expression of ABCC7 in a competitive manner, suggesting the presence of a sorting determinant in this region. Deletion analysis identified a potential sorting information within a 20-amino acid long peptide (aa 41-60) of NT80. Alanine scanning mutagenesis of this region in full-length ABCC7 further narrowed down the apical localization determinant to four amino acids, W<sup>57</sup>DRE<sup>60</sup>. This WDRE sequence was conserved among vertebrate ABCC7 orthologs. Site-directed mutagenesis showed that W<sup>57</sup> and E<sup>60</sup> were critical for the apical expression of ABCC7, confirming a novel apical sorting determinant of ABCC7. Furthermore, a WXXE motif (tryptophan and glutamic acid residues with two-amino acid spacing) was found to be conserved among the N-terminal regions of apically localized ABCC members with 12-TM configuration. The significance of the WXXE motif was demonstrated for proper trafficking of ABCC4 to the apical plasma membrane.Key words: apical plasma membrane, sorting, ATP-binding cassette transporter, CFTR, MRP4.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":"48 1","pages":"71-82"},"PeriodicalIF":1.5,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10721954/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9135259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A non-nucleotide agonist that binds covalently to cysteine residues of STING.","authors":"Kentaro Matsumoto, Shenwei Ni, Hiroyuki Arai, Takashi Toyama, Yoshiro Saito, Takehiro Suzuki, Naoshi Dohmae, Kojiro Mukai, Tomohiko Taguchi","doi":"10.1247/csf.22085","DOIUrl":"10.1247/csf.22085","url":null,"abstract":"<p><p>Stimulator of interferon genes (STING) is an ER-localized transmembrane protein and the receptor for 2',3'-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), which is a second messenger produced by cGAMP synthase (cGAS), a cytosolic double-stranded DNA sensor. The cGAS-STING pathway plays a critical role in the innate immune response to infection of a variety of DNA pathogens through the induction of the type I interferons. Pharmacological activation of STING is a promising therapeutic strategy for cancer, thus the development of potent and selective STING agonists has been pursued. Here we report that mouse STING can be activated by phenylarsine oxide (PAO), a membrane permeable trivalent arsenic compound that preferentially reacts with thiol group of cysteine residue (Cys). The activation of STING with PAO does not require cGAS or cGAMP. Mass spectrometric analysis of the peptides generated by trypsin and chymotrypsin digestion of STING identifies several PAO adducts, suggesting that PAO covalently binds to STING. Screening of STING variants with single Cys to serine residues (Ser) reveals that Cys88 and Cys291 are critical to the response to PAO. STING activation with PAO, as with cGAMP, requires the ER-to-Golgi traffic and palmitoylation of STING. Our results identify a non-nucleotide STING agonist that does not target the cGAMP-binding pocket, and demonstrate that Cys of STING can be a novel target for the development of STING agonist.Key words: STING agonist, cysteine modification, innate immunity, phenylarsine oxide.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":"48 1","pages":"59-70"},"PeriodicalIF":1.5,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10721953/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10736938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}