Cell structure and function最新文献

筛选
英文 中文
Deep learning-based segmentation of 2D projection-derived overlapping prospore membrane in yeast. 基于深度学习的酵母2D投影衍生重叠前体膜分割。
IF 2.2 4区 生物学
Cell structure and function Pub Date : 2025-10-03 Epub Date: 2025-09-13 DOI: 10.1247/csf.25032
Shodai Taguchi, Keita Chagi, Hiroki Kawai, Kenji Irie, Yasuyuki Suda
{"title":"Deep learning-based segmentation of 2D projection-derived overlapping prospore membrane in yeast.","authors":"Shodai Taguchi, Keita Chagi, Hiroki Kawai, Kenji Irie, Yasuyuki Suda","doi":"10.1247/csf.25032","DOIUrl":"10.1247/csf.25032","url":null,"abstract":"<p><p>Quantitative morphological analysis is crucial for understanding cellular processes. While 3D Z-stack imaging offers high-resolution data, the complexity of 3D structures makes direct interpretation and manual annotation challenging and time-consuming, especially for large datasets. Maximum Intensity Projection (MIP) is a common strategy to create more interpretable 2D representations, but this inevitably leads to artificial overlaps between structures, significantly hindering accurate automated segmentation of individual instances by conventional methods or standard deep learning tools. To address this critical challenge in 2D projection analysis, we developed DeMemSeg, a deep learning pipeline based on Mask R-CNN, specifically designed to segment overlapping membrane structures, called prospore membranes (PSMs) during yeast sporulation. DeMemSeg was trained on a custom-annotated dataset, leveraging a systematic image processing workflow. Our optimized model accurately identifies and delineates individual, overlapping PSMs, achieving segmentation performance and derived morphological measurements that are statistically indistinguishable from expert manual annotation. Notably, DeMemSeg successfully generalized to segment PSMs from unseen data acquired from gip1Δ mutant cells, capturing the distinct morphological defects in PSMs. DeMemSeg thus provides a robust, automated solution for objective quantitative analysis of complex, overlapping membrane morphologies directly from widely used 2D MIP images, offering a practical tool and adaptable workflow to advance cell biology research.Key words: deep learning-based segmentation, microscopy image processing, cellular morphology, yeast sporulation, membrane structure.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":" ","pages":"183-195"},"PeriodicalIF":2.2,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145074360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Supersulfides regulate cell migration in human skin keratinocytes. 超硫化物调节人皮肤角质形成细胞的细胞迁移。
IF 2.2 4区 生物学
Cell structure and function Pub Date : 2025-08-20 Epub Date: 2025-07-30 DOI: 10.1247/csf.25018
Kento Kunihiro, Katsura Sano
{"title":"Supersulfides regulate cell migration in human skin keratinocytes.","authors":"Kento Kunihiro, Katsura Sano","doi":"10.1247/csf.25018","DOIUrl":"10.1247/csf.25018","url":null,"abstract":"<p><p>As the outermost organ, the skin is particularly susceptible to physical damage. Keratinocytes are a major component of the epidermis, and their migration plays a crucial role in skin wound healing. Supersulfides contribute to energy production to sustain the life activities of organisms and are anticipated to play a role in various physiological functions; however, minimal studies have investigated their presence and functions in the skin. This study aimed to determine the presence of supersulfides in the skin and investigate their effect on keratinocyte migration. Using sulfane sulfur probe 4 (SSP4), a fluorescent probe that detects sulfane sulfur, the presence of supersulfides in both skin tissue and keratinocytes was revealed. Moreover, the primary supersulfide biosynthetic enzyme, cysteinyl-tRNA synthetase 2 (CARS2), was expressed at both the tissue and cellular levels. CARS2 expression and SSP4 fluorescence intensity in keratinocytes increased during wound healing, suggesting that supersulfide is involved in the regulation of cell migration. Knockdown of CARS2 suppressed keratinocyte migration and markedly downregulated gene expression of various chemokines. Protein expression analysis revealed that supersulfides regulate E-cadherin and matrix metalloproteinase (MMP)-9 via extracellular signal-regulated kinase (ERK) and protein kinase B (Akt). Furthermore, Na<sub>2</sub>S<sub>4</sub> treatment of keratinocytes with CARS2 knockdown restored cell migration. We propose that supersulfide in the skin represents a novel mechanism of re-epithelialization and may serve as a therapeutic target for skin wounds.Key words: supersulfide, cysteinyl-tRNA synthetase 2, keratinocyte, cell migration, wound healing.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":" ","pages":"169-182"},"PeriodicalIF":2.2,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144752539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assembly and mother centriole recruitment of IFT-B subcomplexes to form IFT-B holocomplex. IFT-B亚复合物的组装和母中心粒募集形成IFT-B整体复合物。
IF 2 4区 生物学
Cell structure and function Pub Date : 2025-07-23 Epub Date: 2025-06-24 DOI: 10.1247/csf.25027
Koshi Tasaki, Yohei Katoh, Hye-Won Shin, Kazuhisa Nakayama
{"title":"Assembly and mother centriole recruitment of IFT-B subcomplexes to form IFT-B holocomplex.","authors":"Koshi Tasaki, Yohei Katoh, Hye-Won Shin, Kazuhisa Nakayama","doi":"10.1247/csf.25027","DOIUrl":"10.1247/csf.25027","url":null,"abstract":"<p><p>For the biogenesis and maintenance of cilia, bidirectional protein trafficking within cilia is crucial, and is conducted by intraflagellar transport (IFT) trains containing the IFT-A and IFT-B complexes that are powered by dynein-2 and kinesin-II motors. We have recently shown that before the assembly of anterograde IFT trains, the IFT-A, IFT-B, and dynein-2 complexes are independently recruited to the mother centriole/basal body. The IFT-B complex, which consists of 16 subunits, can be divided into the IFT-B1 and IFT-B2 subcomplexes, and IFT-B1 can be further divided into the IFT-B1a and IFT-B1b subgroups. Here we investigated how the IFT-B complex is assembled and recruited to the mother centriole for ciliogenesis. Analyses using cells with knockouts of individual IFT-B subunits, and analyses of proteins coimmunoprecipitated with EGFP-fused IFT-B2, IFT-B1b, and IFT-B1a subunits expressed in these knockout cells demonstrated the following: (i) although IFT-B2 is dispensable for the linkage between IFT-B1b and IFT-B1a, it is essential for their localization to the mother centriole; (ii) IFT-B1b is essential both for bridging IFT-B2 and IFT-B1a, and for their localization to the mother centriole; (iii) IFT-B1a is not required for the linkage between IFT-B2 and IFT-B1b nor for their localization to the mother centriole; and (iv) all IFT-B components (IFT-B2, IFT-B1b, and IFT-B1a) are essential for ciliogenesis. Thus, although ciliogenesis is not a prerequisite for the recruitment of the IFT-B complex to the mother centriole, the linkage between IFT-B2 and IFT-B1b is crucial for the mother centriole localization of the IFT-B complex for ciliogenesis.Key words: cilia, ciliogenesis, distal appendages, IFT-B complex, mother centriole.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":" ","pages":"157-168"},"PeriodicalIF":2.0,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144504961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Opto-p53: A light-controllable activation of p53 signaling pathway. Opto-p53:一个光可控激活的p53信号通路。
IF 2 4区 生物学
Cell structure and function Pub Date : 2025-07-04 Epub Date: 2025-07-01 DOI: 10.1247/csf.25017
Tatsuki Tsuruoka, Yuhei Goto, Kazuhiro Aoki
{"title":"Opto-p53: A light-controllable activation of p53 signaling pathway.","authors":"Tatsuki Tsuruoka, Yuhei Goto, Kazuhiro Aoki","doi":"10.1247/csf.25017","DOIUrl":"10.1247/csf.25017","url":null,"abstract":"<p><p>p53 protein, a crucial transcription factor in cellular responses to a wide variety of stress, regulates multiple target genes involved in tumor suppression, senescence induction, and metabolic functions. To characterize the context-dependent roles of p53, it is still needed to develop an experimental system that enables selective activation of p53 in cells and tissues. In this study, we developed an optogenetic tool, Opto-p53, to control p53 signaling by light. Opto-p53 was designed to trigger p53 signaling by reconstituting p53 N-terminal and C-terminal fragments with a light-inducible dimerization (LID) system. Upon light exposure, cells expressing Opto-p53 demonstrated p53 transcriptional activation, resulting in cell death and cell cycle arrest. We further enhanced the efficacy of light-induced p53 activation by introducing specific mutations into Opto-p53 fragments. Our findings unveil the capability of Opto-p53 to serve as a powerful tool for dissecting the complex roles of p53 in cellular processes, thereby contributing to the field of synthetic biology and providing general design principles for optogenetic tools using endogenous transcription factors.Key words: synthetic biology, transcriptional factor, p53, optogenetics.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":" ","pages":"145-156"},"PeriodicalIF":2.0,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144274286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell biological insights into human STING variants. 人类STING变异的细胞生物学见解。
IF 2 4区 生物学
Cell structure and function Pub Date : 2025-06-07 Epub Date: 2025-05-14 DOI: 10.1247/csf.25020
Shogo Koide, Eisuke Yumoto, Jun Nakayama, Shigeki Higashiyama, Yoshihiko Kuchitsu, Tomohiko Taguchi
{"title":"Cell biological insights into human STING variants.","authors":"Shogo Koide, Eisuke Yumoto, Jun Nakayama, Shigeki Higashiyama, Yoshihiko Kuchitsu, Tomohiko Taguchi","doi":"10.1247/csf.25020","DOIUrl":"10.1247/csf.25020","url":null,"abstract":"<p><p>Stimulator of interferon genes (STING) is an endoplasmic reticulum (ER)-localized transmembrane protein. STING induces type I interferon and inflammatory responses against a variety of double-stranded DNA (dsDNA) viruses, which is critical for limiting their infection and replication. In certain settings where self-DNAs (genomic or mitochondrial DNA) emerge in the cytosol or when intracellular membrane traffic is impaired, STING becomes activated and triggers inflammation, which may contribute to the pathogenesis of various autoinflammatory and neurodegenerative diseases, including COPA syndrome and Parkinson's disease. The human STING gene exhibits genetic heterogeneity with R232, HAQ (R71H-G230A-R293Q), and H232 being the most common variants, along with population stratification. A very recent study has shown that HAQ, not R232 or H232, mediates complete clinical protection in the pathogenesis of COPA syndrome. These results reveal, for the first time, the distinct activities of the major variants in the context of the pathogenesis of autoinflammatory diseases. Besides these major variants, there exist minor pathogenic STING variants that cause an autoinflammatory disease called STING-associated vasculopathy with onset in infancy (SAVI). This review summarizes recent insights into human STING variants and their inflammatory activities.Key words: innate immunity, STING variants, COPA syndrome, membrane traffic, the Golgi.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":" ","pages":"135-144"},"PeriodicalIF":2.0,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144076317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BiP, GRP94, calreticulin and calnexin contribute to development of the notochord in medaka fish. BiP、GRP94、钙网蛋白和钙连蛋白对脊索发育的影响
IF 2 4区 生物学
Cell structure and function Pub Date : 2025-06-03 Epub Date: 2025-05-13 DOI: 10.1247/csf.25009
Serina Kita, Tokiro Ishikawa, Kazutoshi Mori
{"title":"BiP, GRP94, calreticulin and calnexin contribute to development of the notochord in medaka fish.","authors":"Serina Kita, Tokiro Ishikawa, Kazutoshi Mori","doi":"10.1247/csf.25009","DOIUrl":"10.1247/csf.25009","url":null,"abstract":"<p><p>The accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) activates the unfolded protein response (UPR) to maintain the homeostasis of the ER. The UPR consists of the IRE1, PERK and ATF6 pathways in vertebrates. Knockout of the IRE1 and PERK pathways causes defects in liver and pancreatic β cells, respectively, in mice, whereas knockout of the ATF6 pathway causes very early embryonic lethality in mice and medaka fish, a vertebrate model organism. We previously showed that ATF6 knockout in medaka causes a defect in the development of the notochord-the notochord becomes shorter-but that transient overexpression of the ER chaperone BiP via microinjection of BiP mRNA into one-cell stage embryos of these ATF6 knockout rescues this defect. Here, we microinjected mRNA encoding various ER chaperones and found that GRP94, calreticulin and calnexin also partially rescued this defect. Thus, BiP/GRP94 and calreticulin/calnexin greatly contribute to the development of the notochord by controlling the quality of collagens and N-glycosylated proteins (such as laminin and fibrillin), respectively, which have been confirmed necessary for the formation of the notochord in zebrafish.Key words: endoplasmic reticulum, protein folding, molecular chaperone, collagen, glycoprotein.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":" ","pages":"125-133"},"PeriodicalIF":2.0,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144076315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A quantitative method to monitor STING degradation with dual-luciferase reporters. 利用双荧光素酶报告基因监测STING降解的定量方法。
IF 2 4区 生物学
Cell structure and function Pub Date : 2025-05-20 Epub Date: 2025-04-19 DOI: 10.1247/csf.25011
Tsumugi Shoji, Kanako Sato, Ayumi Shinojima, Shogo Koide, Ruri Shindo, Kazune Hongo, Kojiro Mukai, Yoshihiko Kuchitsu, Tomohiko Taguchi
{"title":"A quantitative method to monitor STING degradation with dual-luciferase reporters.","authors":"Tsumugi Shoji, Kanako Sato, Ayumi Shinojima, Shogo Koide, Ruri Shindo, Kazune Hongo, Kojiro Mukai, Yoshihiko Kuchitsu, Tomohiko Taguchi","doi":"10.1247/csf.25011","DOIUrl":"10.1247/csf.25011","url":null,"abstract":"<p><p>Stimulator of interferon genes (STING) triggers the type I interferon and inflammatory responses against a variety of DNA pathogens, which is essential to limiting viral infection and replication. STING activates the downstream kinase TBK1 at the trans-Golgi network (TGN) and is degraded at lysosomes through a process called lysosomal microautophagy. Impaired STING targeting to lysosomes results in the prolonged inflammatory signal, which may be associated with a variety of neurodegenerative and autoinflammatory diseases. Thus, development of methods to quantify STING degradation helps understand the mechanism of lysosomal microautophagy and its related diseases. Here we report a quantitative method to monitor STING degradation with two luciferases, firefly luciferase (FLuc) and Nanoluciferase (NLuc). The expression plasmid is composed of FLuc, a P2A self-cleavage site, and NLuc-tagged STING. FLuc intensity reflects the total amount of translated protein, serving as an internal control, while NLuc intensity corresponds to the amount of STING. Comparison of the NLuc/FLuc ratios at different time points after STING stimulation revealed the kinetics of decay of STING levels in live cells. This method should provide a useful complement to western blotting and fluorescence-activated cell sorter (FACS) analysis presently used to monitor STING degradation.Key words: innate immunity, STING, membrane traffic, lysosomal degradation, luciferase.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":" ","pages":"115-124"},"PeriodicalIF":2.0,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143992163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Macropinocytosis regulates cytokine expression through Erk signaling in LPS-stimulated macrophages. 巨噬细胞增多症通过lps刺激的巨噬细胞中的Erk信号调节细胞因子的表达。
IF 2 4区 生物学
Cell structure and function Pub Date : 2025-04-18 Epub Date: 2025-03-08 DOI: 10.1247/csf.25008
Li Wang, Yanan Li, Yuxin He, Yuchen Fang, Hitomi Mimuro, Adam C Midgley, Sei Yoshida
{"title":"Macropinocytosis regulates cytokine expression through Erk signaling in LPS-stimulated macrophages.","authors":"Li Wang, Yanan Li, Yuxin He, Yuchen Fang, Hitomi Mimuro, Adam C Midgley, Sei Yoshida","doi":"10.1247/csf.25008","DOIUrl":"10.1247/csf.25008","url":null,"abstract":"<p><p>Macropinocytosis, a type of large-scale endocytosis process, is induced in macrophages by extracellular stimuli, including lipopolysaccharide (LPS). In addition to uptake function, emerging evidence supports a link between macropinocytosis and LPS-induced signal transduction. Following LPS stimulation, membrane ruffles are induced to form cup-like structures known as macropinocytic cups, a necessary precursory step for macropinocytosis. We have recently shown that Akt is activated at the cups and is an upstream regulator of the Iκ-B/NF-κB pathway implicated in the production of IL-1α and IL-6. Here, we further investigated the molecular mechanisms and show that the macropinocytic cups also regulated the Ras/Mek/Erk/c-Fos pathway to modulate IL-1β expression independently of the Akt pathway. In addition, we observed that the cup-dependent Akt pathway downregulated the expression of IL-10, in which the activation of the Erk pathway was critical. Taken together, we propose that macropinocytic cups separately modulate the Akt and Erk pathways in cytokine expression.Key words: macropinocytosis, Erk, IL-1β, IL-10.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":" ","pages":"103-113"},"PeriodicalIF":2.0,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143584949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemokine induces phase transition from non-directional to directional migration during angiogenesis. 趋化因子诱导血管生成过程中从非定向迁移到定向迁移的相变。
IF 2 4区 生物学
Cell structure and function Pub Date : 2025-04-16 Epub Date: 2025-03-13 DOI: 10.1247/csf.24081
Ning Gui, Keisuke Sako, Moe Fukumoto, Naoki Mochizuki, Hiroyuki Nakajima
{"title":"Chemokine induces phase transition from non-directional to directional migration during angiogenesis.","authors":"Ning Gui, Keisuke Sako, Moe Fukumoto, Naoki Mochizuki, Hiroyuki Nakajima","doi":"10.1247/csf.24081","DOIUrl":"10.1247/csf.24081","url":null,"abstract":"<p><p>During angiogenesis, sprouting endothelial cells (ECs) migrate and eventually connect to target vessels to form new vessel branches. However, it remains unclear how these sprouting vessels migrate toward the target vessels in three-dimensional space. We performed in vivo imaging of the cerebral capillary network formation in zebrafish to investigate how sprouting tip cells migrate toward their targets. Of note, we found that tip cells reach the target vessels through two phases: a non-directional phase and a directional phase. In the non-directional phase, sprouting tip cells dynamically extend and retract their protrusions at the leading front and have less directionality in their movement. In contrast, once tip cells enter the directional phase, they migrate directly toward the anastomotic targets. Chemokine receptor Cxcr4a and its ligand Cxcl12b are important for the phase transition to the directional phase. In cxcr4a mutants, sprouting tip cells lose their directionality and tend to connect to nearby sprouting ECs, resulting in altered capillary network patterning. Furthermore, in wild-type (WT) larvae, local Ca<sup>2+</sup> oscillations were detected in protrusions of tip cells, specifically in the non-directional phase, but almost disappeared in the directional phase as a result of the Cxcr4-dependent phase transition. Thus, this study provides evidence of a chemokine-induced phase transition in migrating tip cells, which is important for proper vascular network formation in the zebrafish brain.Key words: angiogenesis, directional migration, live imaging, chemokine, Ca<sup>2+</sup> dynamics, zebrafish.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":" ","pages":"91-101"},"PeriodicalIF":2.0,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143613724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Capturing CDKs in action: Live-cell biosensors pioneer the new frontiers in cell cycle research. 在行动中捕获CDKs:活细胞生物传感器开拓了细胞周期研究的新领域。
IF 2 4区 生物学
Cell structure and function Pub Date : 2025-04-09 Epub Date: 2025-03-05 DOI: 10.1247/csf.25004
Sachiya Nakashima, Aika Toyama, Hironori Sugiyama, Kazuhiro Aoki, Yuhei Goto
{"title":"Capturing CDKs in action: Live-cell biosensors pioneer the new frontiers in cell cycle research.","authors":"Sachiya Nakashima, Aika Toyama, Hironori Sugiyama, Kazuhiro Aoki, Yuhei Goto","doi":"10.1247/csf.25004","DOIUrl":"10.1247/csf.25004","url":null,"abstract":"<p><p>Cyclin-dependent kinases (CDKs) orchestrate cell cycle progression through precise temporal control of substrate phosphorylation. While traditional biochemical approaches and phosphoproteomics have provided valuable insights into CDK-mediated regulation, these methods require cell population analyses and cannot capture real-time dynamics in individual cells. The recent development of fluorescent biosensors has revolutionized our ability to monitor CDK activity in living cells with unprecedented temporal and spatial resolution. Here, we comprehensively review genetically encoded fluorescent biosensors for measuring CDK activity. The two major modes of action in CDK activity biosensors-FRET-based and translocation-based biosensors-enable researchers to select appropriate tools for their specific experimental objectives. These biosensors have revealed precise spatiotemporal CDK activity dynamics across diverse model systems, including yeast, cultured mammalian cells, worms, flies, frog egg extract, fish, and mice. Such technological advances are transforming our understanding of quantitative principles underlying cell cycle control and opening new avenues for investigating cell cycle regulation in various biological contexts.Key words: CDK, FRET, cell cycle, live imaging, biosensor.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":" ","pages":"77-90"},"PeriodicalIF":2.0,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143566250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信