{"title":"BiP、GRP94、钙网蛋白和钙连蛋白对脊索发育的影响","authors":"Serina Kita, Tokiro Ishikawa, Kazutoshi Mori","doi":"10.1247/csf.25009","DOIUrl":null,"url":null,"abstract":"<p><p>The accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) activates the unfolded protein response (UPR) to maintain the homeostasis of the ER. The UPR consists of the IRE1, PERK and ATF6 pathways in vertebrates. Knockout of the IRE1 and PERK pathways causes defects in liver and pancreatic β cells, respectively, in mice, whereas knockout of the ATF6 pathway causes very early embryonic lethality in mice and medaka fish, a vertebrate model organism. We previously showed that ATF6 knockout in medaka causes a defect in the development of the notochord - the notochord becomes shorter - but that transient overexpression of the ER chaperone BiP via microinjection of BiP mRNA into one-cell stage embryos of these ATF6 knockout rescues this defect. Here, we microinjected mRNA encoding various ER chaperones and found that GRP94, calreticulin and calnexin also partially rescued this defect. Thus, BiP/GRP94 and calreticulin/calnexin greatly contribute to the development of the notochord by controlling the quality of collagens and N-glycosylated proteins (such as laminin and fibrillin), respectively, which have been confirmed necessary to the formation of the notochord in zebrafish genetics.Key words: endoplasmic reticulum, protein folding, molecular chaperone, collagen, glycoprotein.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BiP, GRP94, Calreticulin and Calnexin Contribute to Development of the Notochord in Medaka Fish.\",\"authors\":\"Serina Kita, Tokiro Ishikawa, Kazutoshi Mori\",\"doi\":\"10.1247/csf.25009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) activates the unfolded protein response (UPR) to maintain the homeostasis of the ER. The UPR consists of the IRE1, PERK and ATF6 pathways in vertebrates. Knockout of the IRE1 and PERK pathways causes defects in liver and pancreatic β cells, respectively, in mice, whereas knockout of the ATF6 pathway causes very early embryonic lethality in mice and medaka fish, a vertebrate model organism. We previously showed that ATF6 knockout in medaka causes a defect in the development of the notochord - the notochord becomes shorter - but that transient overexpression of the ER chaperone BiP via microinjection of BiP mRNA into one-cell stage embryos of these ATF6 knockout rescues this defect. Here, we microinjected mRNA encoding various ER chaperones and found that GRP94, calreticulin and calnexin also partially rescued this defect. Thus, BiP/GRP94 and calreticulin/calnexin greatly contribute to the development of the notochord by controlling the quality of collagens and N-glycosylated proteins (such as laminin and fibrillin), respectively, which have been confirmed necessary to the formation of the notochord in zebrafish genetics.Key words: endoplasmic reticulum, protein folding, molecular chaperone, collagen, glycoprotein.</p>\",\"PeriodicalId\":9927,\"journal\":{\"name\":\"Cell structure and function\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell structure and function\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1247/csf.25009\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell structure and function","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1247/csf.25009","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
BiP, GRP94, Calreticulin and Calnexin Contribute to Development of the Notochord in Medaka Fish.
The accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) activates the unfolded protein response (UPR) to maintain the homeostasis of the ER. The UPR consists of the IRE1, PERK and ATF6 pathways in vertebrates. Knockout of the IRE1 and PERK pathways causes defects in liver and pancreatic β cells, respectively, in mice, whereas knockout of the ATF6 pathway causes very early embryonic lethality in mice and medaka fish, a vertebrate model organism. We previously showed that ATF6 knockout in medaka causes a defect in the development of the notochord - the notochord becomes shorter - but that transient overexpression of the ER chaperone BiP via microinjection of BiP mRNA into one-cell stage embryos of these ATF6 knockout rescues this defect. Here, we microinjected mRNA encoding various ER chaperones and found that GRP94, calreticulin and calnexin also partially rescued this defect. Thus, BiP/GRP94 and calreticulin/calnexin greatly contribute to the development of the notochord by controlling the quality of collagens and N-glycosylated proteins (such as laminin and fibrillin), respectively, which have been confirmed necessary to the formation of the notochord in zebrafish genetics.Key words: endoplasmic reticulum, protein folding, molecular chaperone, collagen, glycoprotein.
期刊介绍:
Cell Structure and Function is a fully peer-reviewed, fully Open Access journal. As the official English-language journal of the Japan Society for Cell Biology, it is published continuously online and biannually in print.
Cell Structure and Function publishes important, original contributions in all areas of molecular and cell biology. The journal welcomes the submission of manuscripts on research areas such as the cell nucleus, chromosomes, and gene expression; the cytoskeleton and cell motility; cell adhesion and the extracellular matrix; cell growth, differentiation and death; signal transduction; the protein life cycle; membrane traffic; and organelles.