IFT-B亚复合物的组装和母中心粒募集形成IFT-B整体复合物。

IF 2.2 4区 生物学 Q4 CELL BIOLOGY
Cell structure and function Pub Date : 2025-07-23 Epub Date: 2025-06-24 DOI:10.1247/csf.25027
Koshi Tasaki, Yohei Katoh, Hye-Won Shin, Kazuhisa Nakayama
{"title":"IFT-B亚复合物的组装和母中心粒募集形成IFT-B整体复合物。","authors":"Koshi Tasaki, Yohei Katoh, Hye-Won Shin, Kazuhisa Nakayama","doi":"10.1247/csf.25027","DOIUrl":null,"url":null,"abstract":"<p><p>For the biogenesis and maintenance of cilia, bidirectional protein trafficking within cilia is crucial, and is conducted by intraflagellar transport (IFT) trains containing the IFT-A and IFT-B complexes that are powered by dynein-2 and kinesin-II motors. We have recently shown that before the assembly of anterograde IFT trains, the IFT-A, IFT-B, and dynein-2 complexes are independently recruited to the mother centriole/basal body. The IFT-B complex, which consists of 16 subunits, can be divided into the IFT-B1 and IFT-B2 subcomplexes, and IFT-B1 can be further divided into the IFT-B1a and IFT-B1b subgroups. Here we investigated how the IFT-B complex is assembled and recruited to the mother centriole for ciliogenesis. Analyses using cells with knockouts of individual IFT-B subunits, and analyses of proteins coimmunoprecipitated with EGFP-fused IFT-B2, IFT-B1b, and IFT-B1a subunits expressed in these knockout cells demonstrated the following: (i) although IFT-B2 is dispensable for the linkage between IFT-B1b and IFT-B1a, it is essential for their localization to the mother centriole; (ii) IFT-B1b is essential both for bridging IFT-B2 and IFT-B1a, and for their localization to the mother centriole; (iii) IFT-B1a is not required for the linkage between IFT-B2 and IFT-B1b nor for their localization to the mother centriole; and (iv) all IFT-B components (IFT-B2, IFT-B1b, and IFT-B1a) are essential for ciliogenesis. Thus, although ciliogenesis is not a prerequisite for the recruitment of the IFT-B complex to the mother centriole, the linkage between IFT-B2 and IFT-B1b is crucial for the mother centriole localization of the IFT-B complex for ciliogenesis.Key words: cilia, ciliogenesis, distal appendages, IFT-B complex, mother centriole.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":" ","pages":"157-168"},"PeriodicalIF":2.2000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assembly and mother centriole recruitment of IFT-B subcomplexes to form IFT-B holocomplex.\",\"authors\":\"Koshi Tasaki, Yohei Katoh, Hye-Won Shin, Kazuhisa Nakayama\",\"doi\":\"10.1247/csf.25027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For the biogenesis and maintenance of cilia, bidirectional protein trafficking within cilia is crucial, and is conducted by intraflagellar transport (IFT) trains containing the IFT-A and IFT-B complexes that are powered by dynein-2 and kinesin-II motors. We have recently shown that before the assembly of anterograde IFT trains, the IFT-A, IFT-B, and dynein-2 complexes are independently recruited to the mother centriole/basal body. The IFT-B complex, which consists of 16 subunits, can be divided into the IFT-B1 and IFT-B2 subcomplexes, and IFT-B1 can be further divided into the IFT-B1a and IFT-B1b subgroups. Here we investigated how the IFT-B complex is assembled and recruited to the mother centriole for ciliogenesis. Analyses using cells with knockouts of individual IFT-B subunits, and analyses of proteins coimmunoprecipitated with EGFP-fused IFT-B2, IFT-B1b, and IFT-B1a subunits expressed in these knockout cells demonstrated the following: (i) although IFT-B2 is dispensable for the linkage between IFT-B1b and IFT-B1a, it is essential for their localization to the mother centriole; (ii) IFT-B1b is essential both for bridging IFT-B2 and IFT-B1a, and for their localization to the mother centriole; (iii) IFT-B1a is not required for the linkage between IFT-B2 and IFT-B1b nor for their localization to the mother centriole; and (iv) all IFT-B components (IFT-B2, IFT-B1b, and IFT-B1a) are essential for ciliogenesis. Thus, although ciliogenesis is not a prerequisite for the recruitment of the IFT-B complex to the mother centriole, the linkage between IFT-B2 and IFT-B1b is crucial for the mother centriole localization of the IFT-B complex for ciliogenesis.Key words: cilia, ciliogenesis, distal appendages, IFT-B complex, mother centriole.</p>\",\"PeriodicalId\":9927,\"journal\":{\"name\":\"Cell structure and function\",\"volume\":\" \",\"pages\":\"157-168\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell structure and function\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1247/csf.25027\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell structure and function","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1247/csf.25027","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/24 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

对于纤毛的生物发生和维持来说,纤毛内的双向蛋白质运输是至关重要的,它是通过包含由dynein-2和kinesin-II马达驱动的IFT- a和IFT- b复合物的鞭毛内运输(IFT)序列进行的。我们最近的研究表明,在顺行IFT序列组装之前,IFT- a、IFT- b和动力蛋白-2复合物被独立招募到母中心粒/基底体。IFT-B复合物由16个亚基组成,可分为IFT-B1和IFT-B2亚复合物,IFT-B1可进一步分为IFT-B1a和IFT-B1b亚群。在这里,我们研究了IFT-B复合物是如何组装和招募到母中心粒的纤毛发生。对敲除单个IFT-B亚基的细胞进行分析,并对这些敲除细胞中表达的与egfp融合的IFT-B2、IFT-B1b和IFT-B1a亚基共免疫沉淀的蛋白质进行分析,结果表明:(i)尽管IFT-B2对于IFT-B1b和IFT-B1a之间的联系是必不可少的,但它对于它们定位到母中心粒是必不可少的;(ii) IFT-B1b对于连接IFT-B2和IFT-B1a以及它们定位到母中心粒都是必不可少的;(iii) IFT-B1a不需要IFT-B2和IFT-B1b之间的联系,也不需要IFT-B1a定位到母中心粒;(iv)所有IFT-B成分(IFT-B2、IFT-B1b和IFT-B1a)对纤毛发生至关重要。因此,尽管纤毛形成不是IFT-B复合物向母体中心粒募集的先决条件,但IFT-B2和IFT-B1b之间的联系对于IFT-B复合物在母体中心粒定位纤毛形成至关重要。关键词:纤毛,纤毛发生,远端附体,IFT-B复合物,母中心粒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assembly and mother centriole recruitment of IFT-B subcomplexes to form IFT-B holocomplex.

For the biogenesis and maintenance of cilia, bidirectional protein trafficking within cilia is crucial, and is conducted by intraflagellar transport (IFT) trains containing the IFT-A and IFT-B complexes that are powered by dynein-2 and kinesin-II motors. We have recently shown that before the assembly of anterograde IFT trains, the IFT-A, IFT-B, and dynein-2 complexes are independently recruited to the mother centriole/basal body. The IFT-B complex, which consists of 16 subunits, can be divided into the IFT-B1 and IFT-B2 subcomplexes, and IFT-B1 can be further divided into the IFT-B1a and IFT-B1b subgroups. Here we investigated how the IFT-B complex is assembled and recruited to the mother centriole for ciliogenesis. Analyses using cells with knockouts of individual IFT-B subunits, and analyses of proteins coimmunoprecipitated with EGFP-fused IFT-B2, IFT-B1b, and IFT-B1a subunits expressed in these knockout cells demonstrated the following: (i) although IFT-B2 is dispensable for the linkage between IFT-B1b and IFT-B1a, it is essential for their localization to the mother centriole; (ii) IFT-B1b is essential both for bridging IFT-B2 and IFT-B1a, and for their localization to the mother centriole; (iii) IFT-B1a is not required for the linkage between IFT-B2 and IFT-B1b nor for their localization to the mother centriole; and (iv) all IFT-B components (IFT-B2, IFT-B1b, and IFT-B1a) are essential for ciliogenesis. Thus, although ciliogenesis is not a prerequisite for the recruitment of the IFT-B complex to the mother centriole, the linkage between IFT-B2 and IFT-B1b is crucial for the mother centriole localization of the IFT-B complex for ciliogenesis.Key words: cilia, ciliogenesis, distal appendages, IFT-B complex, mother centriole.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell structure and function
Cell structure and function 生物-细胞生物学
CiteScore
2.50
自引率
0.00%
发文量
6
审稿时长
>12 weeks
期刊介绍: Cell Structure and Function is a fully peer-reviewed, fully Open Access journal. As the official English-language journal of the Japan Society for Cell Biology, it is published continuously online and biannually in print. Cell Structure and Function publishes important, original contributions in all areas of molecular and cell biology. The journal welcomes the submission of manuscripts on research areas such as the cell nucleus, chromosomes, and gene expression; the cytoskeleton and cell motility; cell adhesion and the extracellular matrix; cell growth, differentiation and death; signal transduction; the protein life cycle; membrane traffic; and organelles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信