Yan Teng, Youming Huang, Xiaohua Tao, Yibin Fan, Jianhua You
{"title":"Emerging role of ferroptosis in ultraviolet radiation-driven skin photoaging: a narrative review.","authors":"Yan Teng, Youming Huang, Xiaohua Tao, Yibin Fan, Jianhua You","doi":"10.1007/s43630-025-00691-1","DOIUrl":"https://doi.org/10.1007/s43630-025-00691-1","url":null,"abstract":"<p><p>Photoaging is characterized by chronic inflammation in response to ultraviolet (UV) radiation. UV radiation causes skin cells to produce reactive oxygen species (ROS), which causes oxidative stress and inflammation. ROS can reversibly or irreversibly destroy different cellular compounds, including nucleic acids, proteins, free amino acids, lipids, lipoproteins, carbohydrates, and connective tissue macromolecules. Ferroptosis is a kind of programmed cell death caused by iron dependence and lipid peroxidation and has been recently discovered. Its occurrence is primarily related to iron metabolism, antioxidants, lipid peroxidation, and other processes. In addition, high levels of ROS can trigger oxidative stress, altering the redox balance within cells and thus initiating ferroptosis. Ferroptosis has been implicated in UV-driven skin photoaging. Moreover, UV radiation from sunlight can regulate numerous ferroptosis-linked genes. This review will focus on the function of ferroptosis in UV radiation-damaged skin cells. We hope to draw attention to the significance of ferroptosis regulation in the prevention and treatment of skin photoaging.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143595835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Targeted photodynamic elimination of HER2 <sup>+</sup> breast cancer cells mediated by antibody-photosensitizer fusion proteins.","authors":"Yi Li, Jian Hou, Jun Wan, Qinglian Liu, Lei Zhou","doi":"10.1007/s43630-025-00689-9","DOIUrl":"https://doi.org/10.1007/s43630-025-00689-9","url":null,"abstract":"<p><p>Breast cancer has emerged as the leading cause of cancer death in women worldwide. The high recurrence and metastasis rates of malignant tumors impose significant limitations on existing mainstream treatments, including surgery, chemotherapy, and radiotherapy. Photodynamic therapy (PDT) is a clinically validated approach for cancer treatment. PDT requires three elements, photosensitizer, light, and oxygen, and mainly relies on the production of singlet oxygen (<sup>1</sup>O<sub>2</sub>) to elicit damage to the cancer tissue. In this study, we explored targeted photodynamic elimination of breast cancer cells overexpressing human epidermal growth factor receptor 2 (HER2). HER2 is enriched on the surface of certain cancer cells and targeted by commercially available monoclonal antibodies, including Trastuzumab, in the treatment of breast and stomach cancers. We engineered chimeric fusion proteins composed of Trastuzumab and genetically encoded photosensitizers, including SOPP3 and miniSOG. The production of <sup>1</sup>O<sub>2</sub> by these fusion proteins was directly measured by near-infrared spectroscopy centered at 1270 nm and further evaluated in the assay of targeted photodynamic neutralizations of SARS-CoV-2 pseudoviruses. To enhance the internalization of the antibody-photosensitizer fusion protein, cell-penetrating peptides (CPPs) were added to the fusion protein. HER2-positive (HER2<sup>+</sup>) cancer cells were incubated with the antibody-photosensitizer fusion protein and then exposed to light illumination. Cell viability assays revealed an over 50% reduction in cancer cell survival, with minimal impacts on the cells from the control group. In addition, we observed a long-lasting, over 24-h inhibition of the growth of the cancer cells after photodynamic treatment. Thus, based on these assays at the molecular and cellular levels, this study established a targeted photodynamic approach that can potentially be developed as an effective PDT for cancer treatment.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143584041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The wound healing effects of linearly polarized irradiation in photobiomodulation.","authors":"You-Rim Park, Yoo-Kyoung Shin, Joo Beom Eom","doi":"10.1007/s43630-025-00696-w","DOIUrl":"https://doi.org/10.1007/s43630-025-00696-w","url":null,"abstract":"<p><p>We report the fabrication of a polarization-based photobiomodulation (PBM) system and its performance on wound healing effects. The light source for PBM was a 625 nm LED and two different linear polarizations (P-wave and S-wave) were generated using the wire grid linear polarizers. To confirm the effect of PBM on polarization, wounds were created on hairless mice, and the healing process was compared. The light source conditions for comparison were control, two linearly polarized light, and unpolarized light. The light irradiation conditions for each group were based on the energy settings (energy 18 J/cm<sup>2</sup>, power density 30 mW/cm<sup>2</sup>, exposure time 600 sec) commonly used in LED masks. After creating the wound, the light was irradiated only once. To confirm the wound healing effect over time, it was evaluated through wound surface area measurements, self-made optical coherence tomography images, and histological images. In the group irradiated with S-wave polarized light, the percentage from the initial wound size was reduced to 70.73%, and the epithelial tongue ratio reached 58.36% on day 7 after PBM, indicating the fastest recovery. In this way, the potential of a new product that can increase the effect of wound healing or skin regeneration by adjusting the polarization state without irradiating high energy was confirmed.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Said Alam, Xuanzuo Tao, Yanxia Mao, Shaojun Zheng, Chunhui Jiang, Shu-Yang Chen, Hongfei Lu
{"title":"A pyrene-based fluorescent probe for H<sub>2</sub>S detection and cellular imaging.","authors":"Said Alam, Xuanzuo Tao, Yanxia Mao, Shaojun Zheng, Chunhui Jiang, Shu-Yang Chen, Hongfei Lu","doi":"10.1007/s43630-025-00695-x","DOIUrl":"https://doi.org/10.1007/s43630-025-00695-x","url":null,"abstract":"<p><p>Hydrogen sulfide (H<sub>2</sub>S) is a significant reactive sulfur species (RSS) involved in various human diseases, also playing an important role in many physiological and pathological processes. Thus, the development of an effective method for detecting H<sub>2</sub>S in mammalian cells is of great importance. In this study, we present the synthesis of a novel pyrene-based fluorescent probe, DPP, specifically designed for the selective detection of H<sub>2</sub>S. The DPP exhibits remarkable sensitivity, with a low detection limit of 0.63 µM, and demonstrates high selectivity for H<sub>2</sub>S in the presence of various interfering species. Additionally, the probe has demonstrated rapid detection of H<sub>2</sub>S in less than 6 min. The detection mechanism was thoroughly validated using <sup>1</sup>H NMR, FT-IR, UV and fluorescence spectra. Moreover, the applicability of DPP was successfully demonstrated in both in vitro and in vivo settings using HeLa cells, confirming its potential as a powerful tool for monitoring H<sub>2</sub>S in biological systems. Additionally, the probe exhibited excellent performance in detecting H<sub>2</sub>S in water samples and in paper strip-based assays, further highlighting its versatility and practical utility for environmental monitoring and on-site applications.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143536238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marwa Moussa, Abdessalem Hamrouni, Nawres Lazaar, Mounir Ferhi, Ichraf Chérif, Hinda Lachheb, Cláudia G Silva, Maria J Sampaio, Joaquim L Faria
{"title":"Pt-doped g-C<sub>3</sub>N<sub>4</sub> photocatalyst for simultaneous hydrogen production and value-added chemical synthesis under visible light.","authors":"Marwa Moussa, Abdessalem Hamrouni, Nawres Lazaar, Mounir Ferhi, Ichraf Chérif, Hinda Lachheb, Cláudia G Silva, Maria J Sampaio, Joaquim L Faria","doi":"10.1007/s43630-025-00683-1","DOIUrl":"10.1007/s43630-025-00683-1","url":null,"abstract":"<p><p>Metal-free photocatalysts, especially through the use of semi-conductors g-C<sub>3</sub>N<sub>4</sub> (graphitic carbon nitride, CN) have become a prominent topic due to their sustainable advantages and promising effectiveness in hydrogen (H<sub>2</sub>) production. However, CN material requires specific modifications, since its efficacy under visible light suffers from fast recombination of electron/hole pairs (e<sup>‒</sup>/h<sup>+</sup>), slow charge transfer and limited surface area. In this study, we present the synthesis of CN via the thermal treatment of urea and melamine mixture. To enhance its crystallinity and photocatalytic performance, Pt nanoparticles were loaded onto CN by simple incipient wetness impregnation method. The H<sub>2</sub> production was investigated through the potential application of aromatic alcohols including anisyl (AA), benzyl (BA), piperonol (PA), and methanol (M) alcohols, as sacrificial reagents. H<sub>2</sub> production was achieved using the hybrid Pt-CN system with the added benefit of value-added organic synthesis under visible light exposure. The Pt-CN photocatalyst exhibited varying H<sub>2</sub> evolution rates on the alcohol used as sacrificial reagent, with the PA yielding to the highest rate of 503.5 µmol·g<sup>-1</sup>·h<sup>-1</sup>. Stability assessments confirmed the robustness of the synthesized Pt-CN photocatalyst across three consecutive visible light driven experiments. Notably, piperonal (P) synthesis occurred along with H<sub>2</sub> production under visible light. Comprehensive structural, textural, morphologic, optoelectronic and electrochemical characterizations were performed correlating the Pt-CN's properties with its visible photocatalytic performance.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"247-259"},"PeriodicalIF":2.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143456482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Viki Bhakta, Zofa Shireen, SanjitDey, Bijan K Paul, Nikhil Guchhait
{"title":"Photophysical and thermodynamic landscape of interaction of a styryl-based dye with DNA duplex: effect of medium ionic strength and live cell imaging.","authors":"Viki Bhakta, Zofa Shireen, SanjitDey, Bijan K Paul, Nikhil Guchhait","doi":"10.1007/s43630-025-00693-z","DOIUrl":"10.1007/s43630-025-00693-z","url":null,"abstract":"<p><p>A red-emitting excited-state intramolecular charge transfer pyridinium dye, [4-((1E,3E)-4-(4-(dimethylamino)phenyl)buta-1,3-dien-1-yl)-1-methylpyridin-1-ium] (DAPBMP), was synthesized and characterized using NMR and ESIMS studies. Binding interaction between dye DAPBMP and genomic DNA were investigated using steady-state and time-resolved spectroscopic methods. The thermodynamics of the interaction process were characterized using isothermal titration calorimetry (ITC) which reveals the key role of the hydrophobic effect and electrostatic interaction between the positive charged dye and the negatively charged polyphosphate of DNA backbone. The binding of dye to the minor groove of the DNA double helix is confirmed by circular dichroism spectroscopy and molecular docking simulation study. The binding interaction is found to be strongly dependent on the ionic strength of the medium as demonstrated by a systematic study in the presence of various concentrations of NaCl. A detailed calorimetric study shows that polyelectrolytic contribution, ΔGpe, (a measure of the role of electrostatic force) to the total free energy change (ΔG) of interaction progressively decreases with increasing ionic strength of the medium due to weakening of the DAPBMP:DNA binding by screening of the electrostatic charges. The fluorescence of DAPBMP exhibits a remarkable emission enhancement of almost 15 times when the viscosity of the water-propylene glycol system increases. Fluorescent microscopy was performed with C2C12 mouse skeletal myoblast and A549 lung cancer cells in the presence of DAPBMP dye. The dye passed through the C2C12 cell membrane and binds the negatively charged nucleic acids, essentially double-stranded DNA which made the nuclear puncta along with perinuclear located mitochondria.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"307-326"},"PeriodicalIF":2.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V P Conforte, J Rinaldi, H R Bonomi, A Festa, D Garacoche, S Foscaldi, E Castagnaro, A A Vojnov, F Malamud
{"title":"Xanthomonas campestris pv. campestris regulates virulence mechanisms by sensing blue light.","authors":"V P Conforte, J Rinaldi, H R Bonomi, A Festa, D Garacoche, S Foscaldi, E Castagnaro, A A Vojnov, F Malamud","doi":"10.1007/s43630-025-00694-y","DOIUrl":"10.1007/s43630-025-00694-y","url":null,"abstract":"<p><p>Light is an environmental stimulus to which all living organisms are exposed. Numerous studies have shown that bacteria can modulate virulence factors through photoreceptor proteins. Xanthomonas campestris pv. campestris (Xcc) is the causative agent of the systemic vascular disease black rot, which affects cruciferous crops worldwide. Typical symptoms include V-shaped yellow lesions emanating from the leaf margins and blackening of the leaf veins. In previous work, we have shown that Xcc possesses a functional bacteriophytochrome (XccBphP) that regulates its virulence in response to red and far-red light. In addition to the XccBphP protein the Xcc genome codes for a blue light photoreceptor, a Light Oxygen Voltage (LOV) domain-containing protein with a histidine kinase (HK) as the output module. Here, we show that both photoreceptors are able to sense blue light. We demonstrated that XccLOV is a functional photoreceptor by performing loss and gain of function experiments with a knock-out and a complemented strain for the lov gene. Blue light negatively affected swimming motility, whereas xanthan production was regulated by XccBphP, in a blue light independent manner. Additionally, our studies showed that blue light altered biofilm structure patterns and enhanced virulence. Overall, these results revealed that some Xcc virulence factors are blue light modulated via at least two photoreceptors.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"327-342"},"PeriodicalIF":2.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143481863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sadin Özdemir, Derya Güngördü Solğun, Gülay Giray, Mehmet Salih Ağırtaş
{"title":"Synthesis and biological activity, photophysical, photochemical properties of tetra substituted magnesium phthalocyanine.","authors":"Sadin Özdemir, Derya Güngördü Solğun, Gülay Giray, Mehmet Salih Ağırtaş","doi":"10.1007/s43630-025-00686-y","DOIUrl":"10.1007/s43630-025-00686-y","url":null,"abstract":"<p><p>The compound 4-(2-((1H-benzo[d]imidazol-2-yl) thio) phenoxy) phthalonitrile was obtained from the reaction of 2-nitrophenol, 4-nitrophthalonitrile and 2-mercaptobenzimidazole. This compound was reacted with magnesium Chloride (MgCl<sub>2</sub>) to yield tetrakis-[(2-((1H-benzo[d]imidazol-2-yl) thio) phenoxy) phthalocyaninato] magnesium II. New compounds were characterized by UV-vis, <sup>1</sup>H NMR, <sup>13</sup>C NMR, FTIR and Mass spectra. Electronic spectra aggregation study of magnesium phthalocyanine compound in various concentrations and diverse solvents was performed. Photoluminescence spectra of magnesium phthalocyanine in different solvents were investigated. The biological activities of 3 and 4 compounds were investigated. The results showed that 4 had excellent antioxidant and antidiabetic activities as 75.71% and 81.83%, respectively. 3 and 4 had deoxyribonucleic acid (DNA) cleavage ability and 4 caused a double-strand fracture in plasmid DNA at 100 and 200 mg/L. Both compounds showed antimicrobial activity and also 4 was more effective against pathogenic microorganisms than 3. Photodynamic antimicrobial therapy of test compound was also more effective than without irradiation. The highest biofilm inhibition of 3 and 4 was 78.28% and 98.49% for S. aureus and also 73.95% and 91.13% for P. aeruginosa, respectively. Finally, both compounds demonstrated %100 microbial cell viability inhibition at 100 mg/L. Overall, the study suggests that both 3 and 4 have potential for further development as therapeutic agents.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"277-292"},"PeriodicalIF":2.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143424624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sunscreens in pigmentary disorders: time to revise the message.","authors":"Sahngeun Jenny Mun, Vanessa Lee, Monisha Gupta","doi":"10.1007/s43630-025-00688-w","DOIUrl":"10.1007/s43630-025-00688-w","url":null,"abstract":"<p><p>Current sunscreen messaging centres around skin cancer prevention, with an emphasis on mitigating the damaging effects of ultraviolet B (UVB) radiation. Darker skin is believed to be better protected against UVB owing to its higher melanin content, and therefore, this messaging has been largely targeted at people with lighter skin tones. This is reflected by low sunscreen use by people of darker skin types. However, visible light (VL) is now being appreciated as a culprit behind exacerbation of disorders of hyperpigmentation such as melasma and post-inflammatory hyperpigmentation (PIH) which is known to significantly impair quality of life (QoL) of those affected. The role of VL in melanogenesis is not well known to patients nor to dermatologists and is a missed opportunity in the management of pigmentary disorders. We propose that changing the terminology from 'sunscreen' to 'light protection' acknowledges the central role of VL in melanogenesis, underlining the importance of VL protection and making the messaging more inclusive for people of all skin colours.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"215-225"},"PeriodicalIF":2.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143490181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
İsa Sıdır, Yadigar Gülseven Sıdır, Halil Berber, Rui Fausto
{"title":"Solvatochromism and cis-trans isomerism in azobenzene-4-sulfonyl chloride.","authors":"İsa Sıdır, Yadigar Gülseven Sıdır, Halil Berber, Rui Fausto","doi":"10.1007/s43630-025-00684-0","DOIUrl":"10.1007/s43630-025-00684-0","url":null,"abstract":"<p><p>Solvatochromism exhibited by azobenzene-4-sulfonyl chloride (here abbreviated as Azo-SCl) has been investigated in a series of non-polar, polar-aprotic and polar-protic solvents. The UV-vis spectra of Azo-SCl exhibit two long-wavelength bands, observed at 321-330 nm (band-I) and 435-461 nm (band-II), which are ascribed to the π*-π (S<sub>2</sub> ← S<sub>0</sub>) and π*-n (S<sub>1</sub> ← S<sub>0</sub>) transitions, respectively. The shorter wavelength band indicates a reversal in solvatochromism, from negative to positive solvatochromism, for a solvent with a dielectric constant of 32.66 (which is characteristic of methanol), while the longer wavelength band signposts negative solvatochromism in all range of solvent's dielectric constant investigated, demonstrating different interactions with the solvents in the S<sub>2</sub> and S<sub>1</sub> excited states. Using Catalán and Kamlet-Taft solvation energy models, we found that the shift in the solvatochromic behavior of band-I (S<sub>2</sub> ← S<sub>0</sub>) happens because solvent dipolarity/polarizability and hydrogen bonding affect the S<sub>2</sub> state in opposite ways. Dipolarity/polarizability stabilizes the S<sub>2</sub> state compared to the ground state, while hydrogen bonding destabilizes it. In contrast, for S<sub>1</sub>, both effects work together to destabilize the excited state. For all studied solvents, UV irradiation (λ ≥ 311 nm; room temperature) was found to lead to fast trans-cis azo photoisomerization. In the absence of light, the photogenerated cis form quickly converts back to the trans form. Interpretation of the experimental data is supported by quantum chemical calculations undertaken within the Density Functional Theory (DFT) framework, including Time Dependent DFT calculations for excited states.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"261-275"},"PeriodicalIF":2.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}