Chinese Journal of Catalysis最新文献

筛选
英文 中文
Dual-channel redox reactions for photocatalytic H2-evolution coupled with photoreforming oxidation of waste materials 双通道氧化还原反应,用于光催化 H2 进化和废料的光转化氧化
IF 15.7 1区 化学
Chinese Journal of Catalysis Pub Date : 2024-10-01 DOI: 10.1016/S1872-2067(24)60118-X
Huan Liu , Shaoxiong He , Jiafu Qu , Yahui Cai , Xiaogang Yang , Chang Ming Li , Jundie Hu
{"title":"Dual-channel redox reactions for photocatalytic H2-evolution coupled with photoreforming oxidation of waste materials","authors":"Huan Liu ,&nbsp;Shaoxiong He ,&nbsp;Jiafu Qu ,&nbsp;Yahui Cai ,&nbsp;Xiaogang Yang ,&nbsp;Chang Ming Li ,&nbsp;Jundie Hu","doi":"10.1016/S1872-2067(24)60118-X","DOIUrl":"10.1016/S1872-2067(24)60118-X","url":null,"abstract":"<div><div>Dual-channel redox reaction system is advantageous for photocatalytic hydrogen (H<sub>2</sub>) production when coupled with photoreforming oxidation of waste materials, benefiting both thermodynamically and kinetically. However, existing reviews primarily focus on specific oxidation reactions, such as oxidative organic synthesis and water remediation, often neglecting recent advancements in plastic upgrading, biomass conversion, and H<sub>2</sub>O<sub>2</sub> production, and failing to provide an in-depth discussion of catalytic mechanisms. This review addresses these gaps by offering a comprehensive overview of recent advancements in dual-channel redox reactions for photocatalytic H<sub>2</sub>-evolution and waste photoreforming. It highlights waste-to-wealth design concepts, examines the challenges, advantages and diverse applications of dual-channel photocatalytic reactions, including photoreforming of biomass, alcohol, amine, plastic waste, organic pollutants, and H<sub>2</sub>O<sub>2</sub> production. Emphasizing improvement strategies and exploration of catalytic mechanisms, it includes advanced <em>in-situ</em> characterization, spin capture experiments, and DFT calculations. By identifying challenges and future directions in this field, this review provides valuable insights for designing innovative dual-channel photocatalytic systems.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"65 ","pages":"Pages 1-39"},"PeriodicalIF":15.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mg-doped SrTaO2N as a visible-light-driven H2-evolution photocatalyst for accelerated Z-scheme overall water splitting 掺镁 SrTaO2N 作为可见光驱动的 H2 演变光催化剂,用于加速 Z 型整体水分离
IF 15.7 1区 化学
Chinese Journal of Catalysis Pub Date : 2024-10-01 DOI: 10.1016/S1872-2067(24)60082-3
Jun Xu , Ying Luo , Qiaoqi Guo , Wenzheng Sun , Shanshan Chen , Zheng Wang , Hong He
{"title":"Mg-doped SrTaO2N as a visible-light-driven H2-evolution photocatalyst for accelerated Z-scheme overall water splitting","authors":"Jun Xu ,&nbsp;Ying Luo ,&nbsp;Qiaoqi Guo ,&nbsp;Wenzheng Sun ,&nbsp;Shanshan Chen ,&nbsp;Zheng Wang ,&nbsp;Hong He","doi":"10.1016/S1872-2067(24)60082-3","DOIUrl":"10.1016/S1872-2067(24)60082-3","url":null,"abstract":"<div><div>Perovskite SrTaO<sub>2</sub>N is one of the most promising narrow-bandgap photocatalysts for Z-scheme overall water splitting. However, the formation of defect states during thermal nitridation severely hinders the separation of charges, resulting in poor photocatalytic activity. In the present study, we successfully synthesize SrTaO<sub>2</sub>N photocatalyst with low density of defect states, uniform morphology and particle size by flux-assisted one-pot nitridation combined with Mg doping. Some important parameters, such as the size of unit cell, the content of nitrogen, and microstructure, prove the successful doping of Mg. The defect-related carrier recombination has been significantly reduced by Mg doping, which effectively promotes the charge separation. Moreover, Mg doping induces a change of the band edge, which makes proton reduction have a stronger driving force. After modifying with the core/shell-structured Pt/Cr<sub>2</sub>O<sub>3</sub> cocatalyst, the H<sub>2</sub> evolution activity of the optimized SrTaO<sub>2</sub>N:Mg is 10 times that of the undoped SrTaO<sub>2</sub>N, with an impressive apparent quantum yield of 1.51% at 420 nm. By coupling with Au-FeCoO<sub><em>x</em></sub> modified BiVO<sub>4</sub> as an O<sub>2</sub>-evolution photocatalyst and [Fe(CN)<sub>6</sub>]<sup>3−</sup>/[Fe(CN)<sub>6</sub>]<sup>4−</sup> as the redox couple, a redox-based Z-scheme overall water splitting system is successfully constructed with an apparent quantum yield of 1.36% at 420 nm. This work provides an alternative way to prepare oxynitride semiconductors with reduced defects to promote the conversion of solar energy.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"65 ","pages":"Pages 70-78"},"PeriodicalIF":15.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activating d10 electronic configuration to regulate p-band centers as efficient active sites for solar energy conversion into H2 by surface atomic arrangement 激活 d10 电子构型,通过表面原子排列调节 p 波段中心,使其成为将太阳能转化为 H2 的高效活性位点
IF 15.7 1区 化学
Chinese Journal of Catalysis Pub Date : 2024-10-01 DOI: 10.1016/S1872-2067(24)60119-1
Shanshan Lai , Jiakun Su , Shujuan Jiang , Jianjun Zhang , Shaoqing Song
{"title":"Activating d10 electronic configuration to regulate p-band centers as efficient active sites for solar energy conversion into H2 by surface atomic arrangement","authors":"Shanshan Lai ,&nbsp;Jiakun Su ,&nbsp;Shujuan Jiang ,&nbsp;Jianjun Zhang ,&nbsp;Shaoqing Song","doi":"10.1016/S1872-2067(24)60119-1","DOIUrl":"10.1016/S1872-2067(24)60119-1","url":null,"abstract":"<div><div>Relationship between the activity for photocatalytic H<sub>2</sub>O overall splitting (HOS) and the electron occupancy on <em>d</em> orbits of the active component in photocatalysts shows volcanic diagram, and specially the <em>d</em><sup>10</sup> electronic configuration in valley bottom exhibits inert activity, which seriously fetters the development of catalytic materials with great potentials. Herein, In <em>d</em><sup>10</sup> electronic configuration of In<sub>2</sub>O<sub>3</sub> was activated by phosphorus atoms replacing its lattice oxygen to regulate the collocation of the ascended In 5<em>p</em>-band (In <em>ɛ</em><sub>5<em>p</em></sub>) and descended O 2<em>p</em>-band (O <em>ɛ</em><sub>2<em>p</em></sub>) centers as efficient active sites for chemisorption to *OH and *H during forward HOS, respectively, along with a declined In 4<em>d</em>-band center (In <em>ɛ</em><sub>4<em>d</em></sub>) to inhibit its backward reaction. A stable STH efficiency of 2.23% under AM 1.5 G irradiation at 65 °C has been obtained over the activated <em>d</em><sup>10</sup> electronic configuration with a lowered activation energy for H<sub>2</sub> evolution, verified by femtosecond transient absorption spectroscopy, <em>in situ</em> diffuse reflectance infrared Fourier transform spectroscopy and theoretical calculations of dynamics. These findings devote to activating <em>d</em><sup>10</sup> electronic configuration for resolving the reaction energy barrier and dynamical bottleneck of forward HOS, which expands the exploration of high-efficiency catalytic materials.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"65 ","pages":"Pages 185-194"},"PeriodicalIF":15.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly selective electrosynthesis of imines via electroreduction coupling of nitroarenes with aryl aldehydes on Co9S8 with positively charged sulfur vacancies 在带正电荷硫空位的 Co9S8 上通过硝基烯烃与芳基醛的电还原偶联高选择性地电合成亚胺
IF 15.7 1区 化学
Chinese Journal of Catalysis Pub Date : 2024-10-01 DOI: 10.1016/S1872-2067(24)60115-4
Dianke Xie , Tianyi Yang , Chongyang Ma , Chung-Li Dong , Shuangyin Wang , Yuqin Zou
{"title":"Highly selective electrosynthesis of imines via electroreduction coupling of nitroarenes with aryl aldehydes on Co9S8 with positively charged sulfur vacancies","authors":"Dianke Xie ,&nbsp;Tianyi Yang ,&nbsp;Chongyang Ma ,&nbsp;Chung-Li Dong ,&nbsp;Shuangyin Wang ,&nbsp;Yuqin Zou","doi":"10.1016/S1872-2067(24)60115-4","DOIUrl":"10.1016/S1872-2067(24)60115-4","url":null,"abstract":"<div><div>The electrocatalytic synthesis of imines through the reductive imination of nitroarenes with aldehydes is a facile, environmentally friendly, and valuable process. In this study, high selectivity electrosynthesis of imines was realized through the electrocatalytic C-N coupling reaction between nitroarenes and aryl aldehydes on Co<sub>9</sub>S<sub>8</sub> nanoflowers with rich sulfur vacancies (Co<sub>9</sub>S<sub>8</sub>-V<sub>s</sub>). Comparative experiments revealed that positively charged sulfur vacancies play a pivotal role in boosting catalytic selectivity towards imines. Electron-deficient sulfur vacancies intensified the adsorption of negatively charged Ph-NO<sub>2</sub>, thereby enhancing the conversion rate of the electrochemical nitrobenzene-reduction reaction (eNB-RR). Simultaneously, sulfur vacancies augmented the adsorption capability of negatively charged Ph-CHO, enriching Ph-CHO species at the electrode interface and expediting the Schiff base condensation reaction rate. The experimental results show that the reaction conditions can satisfy the different nitroarenes and aryl aldehydes in the electrocatalytic aqueous-phase system under mild conditions to obtain the corresponding imine products in high selectivity. This study provides a facile and environmentally friendly pathway for future electrocatalytic synthesis of imine.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"65 ","pages":"Pages 206-216"},"PeriodicalIF":15.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the roles of atomically-dispersed Au in boosting photocatalytic CO2 reduction and aryl alcohol oxidation 揭示原子分散金在促进光催化二氧化碳还原和芳基醇氧化中的作用
IF 15.7 1区 化学
Chinese Journal of Catalysis Pub Date : 2024-10-01 DOI: 10.1016/S1872-2067(24)60109-9
Jian Lei , Nan Zhou , Shuaikang Sang , Sugang Meng , Jingxiang Low , Yue Li
{"title":"Unraveling the roles of atomically-dispersed Au in boosting photocatalytic CO2 reduction and aryl alcohol oxidation","authors":"Jian Lei ,&nbsp;Nan Zhou ,&nbsp;Shuaikang Sang ,&nbsp;Sugang Meng ,&nbsp;Jingxiang Low ,&nbsp;Yue Li","doi":"10.1016/S1872-2067(24)60109-9","DOIUrl":"10.1016/S1872-2067(24)60109-9","url":null,"abstract":"<div><div>Atomically-dispersed metal-based materials represent an emerging class of photocatalysts attributed to their high catalytic activity, abundant surface active sites, and efficient charge separation. Nevertheless, the roles of different forms of atomically-dispersed metals (<em>i</em>.<em>e</em>., single-atoms and atomic clusters) in photocatalytic reactions remain ambiguous. Herein, we developed an ethylenediamine (EDA)-assisted reduction method to controllably synthesize atomically dispersed Au in the forms of Au single atoms (Au<sub>SA</sub>), Au clusters (Au<sub>C</sub>), and a mixed-phase of Au<sub>SA</sub> and Au<sub>C</sub> (Au<sub>SA+C</sub>) on CdS. In addition, we elucidate the synergistic effect of Au<sub>SA</sub> and Au<sub>C</sub> in enhancing the photocatalytic performance of CdS substrates for simultaneous CO<sub>2</sub> reduction and aryl alcohol oxidation. Specifically, Au<sub>SA</sub> can effectively lower the energy barrier for the CO<sub>2</sub>→*COOH conversion, while Au<sub>C</sub> can enhance the adsorption of alcohols and reduce the energy barrier for dehydrogenation. As a result, the Au<sub>SA</sub> and Au<sub>C</sub> co-loaded CdS show impressive overall photocatalytic CO<sub>2</sub> conversion performance, achieving remarkable CO and BAD production rates of 4.43 and 4.71 mmol g<sup>−1</sup> h<sup>−1</sup>, with the selectivities of 93% and 99%, respectively. More importantly, the solar-to-chemical conversion efficiency of Au<sub>SA+C</sub>/CdS reaches 0.57%, which is over fivefold higher than the typical solar-to-biomass conversion efficiency found in nature (<em>ca</em>. 0.1%). This study comprehensively describes the roles of different forms of atomically-dispersed metals and their synergistic effects in photocatalytic reactions, which is anticipated to pave a new avenue in energy and environmental applications.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"65 ","pages":"Pages 163-173"},"PeriodicalIF":15.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ab initio molecular dynamics simulation reveals the influence of entropy effect on Co@BEA zeolite-catalyzed dehydrogenation of ethane Ab initio 分子动力学模拟揭示了熵效应对 Co@BEA 沸石催化乙烷脱氢反应的影响
IF 15.7 1区 化学
Chinese Journal of Catalysis Pub Date : 2024-10-01 DOI: 10.1016/S1872-2067(24)60116-6
Yumeng Fo, Shaojia Song, Kun Yang, Xiangyang Ji, Luyuan Yang, Liusai Huang, Xinyu Chen, Xueqiu Wu, Jian Liu, Zhen Zhao, Weiyu Song
{"title":"Ab initio molecular dynamics simulation reveals the influence of entropy effect on Co@BEA zeolite-catalyzed dehydrogenation of ethane","authors":"Yumeng Fo,&nbsp;Shaojia Song,&nbsp;Kun Yang,&nbsp;Xiangyang Ji,&nbsp;Luyuan Yang,&nbsp;Liusai Huang,&nbsp;Xinyu Chen,&nbsp;Xueqiu Wu,&nbsp;Jian Liu,&nbsp;Zhen Zhao,&nbsp;Weiyu Song","doi":"10.1016/S1872-2067(24)60116-6","DOIUrl":"10.1016/S1872-2067(24)60116-6","url":null,"abstract":"<div><div>The C–H bond activation in alkane dehydrogenation reactions is a key step in determining the reaction rate. To understand the impact of entropy, we performed ab initio static and molecular dynamics free energy simulations of ethane dehydrogenation over Co@BEA zeolite at different temperatures. AIMD simulations showed that a sharp decrease in free energy barrier as temperature increased. Our analysis of the temperature dependence of activation free energies uncovered an unusual entropic effect accompanying the reaction. The unique spatial structures around the Co active site at different temperatures influenced both the extent of charge transfer in the transition state and the arrangement of 3<em>d</em> orbital energy levels. We provided explanations consistent with the principles of thermodynamics and statistical physics. The insights gained at the atomic level have offered a fresh interpretation of the intricate long-range interplay between local chemical reactions and extensive chemical environments.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"65 ","pages":"Pages 195-205"},"PeriodicalIF":15.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the roles of Brønsted/Lewis acid sites on manganese oxide-zeolite hybrid catalysts for low-temperature NH3-SCR 了解用于低温 NH3-SCR 的氧化锰-沸石杂化催化剂上的布氏/路易斯酸位点的作用
IF 15.7 1区 化学
Chinese Journal of Catalysis Pub Date : 2024-10-01 DOI: 10.1016/S1872-2067(24)60112-9
Hyun Sub Kim , Hwangho Lee , Hongbeom Park , Inhak Song , Do Heui Kim
{"title":"Understanding the roles of Brønsted/Lewis acid sites on manganese oxide-zeolite hybrid catalysts for low-temperature NH3-SCR","authors":"Hyun Sub Kim ,&nbsp;Hwangho Lee ,&nbsp;Hongbeom Park ,&nbsp;Inhak Song ,&nbsp;Do Heui Kim","doi":"10.1016/S1872-2067(24)60112-9","DOIUrl":"10.1016/S1872-2067(24)60112-9","url":null,"abstract":"<div><div>Although metal oxide-zeolite hybrid materials have long been known to achieve enhanced catalytic activity and selectivity in NO<sub><em>x</em></sub> removal reactions through the inter-particle diffusion of intermediate species, their subsequent reaction mechanism on acid sites is still unclear and requires investigation. In this study, the distribution of Brønsted/Lewis acid sites in the hybrid materials was precisely adjusted by introducing potassium ions, which not only selectively bind to Brønsted acid sites but also potentially affect the formation and diffusion of activated NO species. Systematic <em>in situ</em> diffuse reflectance infrared Fourier transform spectroscopy analyses coupled with selective catalytic reduction of NO<sub><em>x</em></sub> with NH<sub>3</sub> (NH<sub>3</sub>-SCR) reaction demonstrate that the Lewis acid sites over MnO<sub><em>x</em></sub> are more active for NO reduction but have lower selectivity to N<sub>2</sub> than Brønsted acids sites. Brønsted acid sites primarily produce N<sub>2</sub>, whereas Lewis acid sites primarily produce N<sub>2</sub>O, contributing to unfavorable N<sub>2</sub> selectivity. The Brønsted acid sites present in Y zeolite, which are stronger than those on MnO<sub><em>x</em></sub>, accelerate the NH<sub>3</sub>-SCR reaction in which the nitrite/nitrate species diffused from the MnO<sub><em>x</em></sub> particles rapidly convert into the N<sub>2</sub>. Therefore, it is important to design the catalyst so that the activated NO species formed in MnO<sub><em>x</em></sub> diffuse to and are selectively decomposed on the Brønsted acid sites of H-Y zeolite rather than that of MnO<sub><em>x</em></sub> particle. For the physically mixed H-MnO<sub><em>x</em></sub>+H-Y sample, the abundant Brønsted/Lewis acid sites in H-MnO<sub><em>x</em></sub> give rise to significant consumption of activated NO species before their inter-particle diffusion, thereby hindering the enhancement of the synergistic effects. Furthermore, we found that the intercalated K<sup>+</sup> in K-MnO<sub><em>x</em></sub> has an unexpected favorable role in the NO reduction rate, probably owing to faster diffusion of the activated NO species on K-MnO<sub><em>x</em></sub> than H-MnO<sub><em>x</em></sub>. This study will help to design promising metal oxide-zeolite hybrid catalysts by identifying the role of the acid sites in two different constituents.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"65 ","pages":"Pages 79-88"},"PeriodicalIF":15.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Promoting role of Ru species on Ir-Fe/BN catalyst in 1,2-diols hydrogenolysis to secondary alcohols Ir-Fe/BN 催化剂上的 Ru 物种在 1,2-二醇氢解为仲醇过程中的促进作用
IF 15.7 1区 化学
Chinese Journal of Catalysis Pub Date : 2024-10-01 DOI: 10.1016/S1872-2067(24)60110-5
Ben Liu , Yoshinao Nakagawa , Mizuho Yabushita , Keiichi Tomishige
{"title":"Promoting role of Ru species on Ir-Fe/BN catalyst in 1,2-diols hydrogenolysis to secondary alcohols","authors":"Ben Liu ,&nbsp;Yoshinao Nakagawa ,&nbsp;Mizuho Yabushita ,&nbsp;Keiichi Tomishige","doi":"10.1016/S1872-2067(24)60110-5","DOIUrl":"10.1016/S1872-2067(24)60110-5","url":null,"abstract":"<div><div>Noble metal-based-bimetallic catalysts have been highly investigated and applied in wide applications including biomass transformation <em>via</em> regioselective C−O hydrogenolysis while further modification especially with noble metal is highly promising yet still under investigation. Herein, Ru was found as an effective modifier among the screened noble metals (Ru, Pt, Rh, Pd, Au, and Ag) for Ir-Fe/BN (Ir = 5 wt%, Fe/Ir = 0.25) catalyst in terminal C−O hydrogenolysis of 1,2-butanediol (1,2-BuD) to 2-butanol (2-BuOH). Only trace amount of Ru (up to 0.5 wt%) was effective in terms of high 2-BuOH selectivity (&gt; 60%) and activity (about twice). Larger amount of Ru species (3 wt%) highly enhanced the activity but gave low selectivity to 2-BuOH with by-products of terminal C−C bond scission. Optimized catalyst (Ru(0.5)-Ir-Fe/BN) was reusable at least 4 times and gave moderate 2-BuOH yield (47%) in hydrogenolysis of 1,2-BuD. The promoting effect of Ru addition (0.5 wt%) to Ir-Fe/BN on hydrogenolysis of various alcohols was also confirmed. Combining catalytic tests with various characterizations, the promotion mechanism of Ru species in trimetallic catalysts was clarified. The Ru species in Ru(0.5)-Ir-Fe/BN form alloy with Ir and are enriched at the interface with BN surface, and direct interaction between Ru and Fe was not necessary in Ru-Ir-Fe alloy. The interface of Ir and Fe on the surface of Ir-Fe alloy may work as active sites for 1,2-diols to secondary alcohols <em>via</em> direct C−O hydrogenolysis, in which Ru-modified Ir activates H<sub>2</sub> to form hydride-like species. The activity of Ru species in C−C bond cleavage was highly suppressed due to the direct interaction with Ir species and less exposed to substrate. Larger loading amount of Ru species (3 wt%) led to the formation Ru-rich trimetallic alloy, which further works as active sites for C−C bond scission.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"65 ","pages":"Pages 89-102"},"PeriodicalIF":15.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CO2-assisted oxidation dehydrogenation of light alkanes over metal-based heterogeneous catalysts 在金属基异质催化剂上进行 CO2- 辅助轻烷氧化脱氢反应
IF 15.7 1区 化学
Chinese Journal of Catalysis Pub Date : 2024-10-01 DOI: 10.1016/S1872-2067(24)60094-X
Yingbin Zheng , Xinbao Zhang , Junjie Li , Jie An , Longya Xu , Xiujie Li , Xiangxue Zhu
{"title":"CO2-assisted oxidation dehydrogenation of light alkanes over metal-based heterogeneous catalysts","authors":"Yingbin Zheng ,&nbsp;Xinbao Zhang ,&nbsp;Junjie Li ,&nbsp;Jie An ,&nbsp;Longya Xu ,&nbsp;Xiujie Li ,&nbsp;Xiangxue Zhu","doi":"10.1016/S1872-2067(24)60094-X","DOIUrl":"10.1016/S1872-2067(24)60094-X","url":null,"abstract":"<div><div>Light olefins are important platform feedstocks in the petrochemical industry, and the ongoing global economic development has driven sustained growth in demand for these compounds. The dehydrogenation of alkanes, derived from shale gas, serves as an alternative olefins production route. Concurrently, the target of realizing carbon neutrality promotes the comprehensive utilization of greenhouse gas. The integrated process of light alkanes dehydrogenation and carbon dioxide reduction (CO<sub>2</sub>-ODH) can produce light olefins and realize resource utilization of CO<sub>2</sub>, which has gained wide popularity. With the introduction of CO<sub>2</sub>, coke deposition and metal reduction encountered in alkanes dehydrogenation reactions can be effectively suppressed. CO<sub>2</sub>-assisted alkanes dehydrogenation can also reduce the risk of potential explosion hazard associated with O<sub>2</sub>-oxidative dehydrogenation reactions. Recent investigations into various metal-based catalysts including mono- and bi-metallic alloys and oxides have displayed promising performances due to their unique properties. This paper provides the comprehensive review and critical analysis of advancements in the CO<sub>2</sub>-assisted oxidative dehydrogenation of light alkanes (C2-C4) on metal-based catalysts developed in recent years. Moreover, it offers a comparative summary of the structural properties, catalytic activities, and reaction mechanisms over various active sites, providing valuable insights for the future design of dehydrogenation catalysts.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"65 ","pages":"Pages 40-69"},"PeriodicalIF":15.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dipole polarization modulating of vinylene-linked covalent organic frameworks for efficient photocatalytic hydrogen evolution 调节乙烯基连接共价有机框架的偶极极化以实现高效光催化氢进化
IF 15.7 1区 化学
Chinese Journal of Catalysis Pub Date : 2024-10-01 DOI: 10.1016/S1872-2067(24)60113-0
Ming Wang , Yaling Li , Dengxin Yan , Hui Hu , Yujie Song , Xiaofang Su , Jiamin Sun , Songtao Xiao , Yanan Gao
{"title":"Dipole polarization modulating of vinylene-linked covalent organic frameworks for efficient photocatalytic hydrogen evolution","authors":"Ming Wang ,&nbsp;Yaling Li ,&nbsp;Dengxin Yan ,&nbsp;Hui Hu ,&nbsp;Yujie Song ,&nbsp;Xiaofang Su ,&nbsp;Jiamin Sun ,&nbsp;Songtao Xiao ,&nbsp;Yanan Gao","doi":"10.1016/S1872-2067(24)60113-0","DOIUrl":"10.1016/S1872-2067(24)60113-0","url":null,"abstract":"<div><div>Photocatalytic hydrogen (H<sub>2</sub>) evolution using covalent organic frameworks (COFs) is an attractive and promising avenue for exploration, but one of its big challenges is low photo-induced charge separation. In this study, we present a straightforward and facile dipole polarization engineering strategy to enhance charge separation efficiency, achieved through atomic modulation (O, S, and Se) of the COF monomer. Our findings demonstrate that incorporating atoms with varying electronegativities into the COF matrix significantly influences the local dipole moment, thereby affecting charge separation efficiency and photostability, which in turn affects the rates of photocatalytic H<sub>2</sub> evolution. As a result, the newly developed TMT-BO-COF, which contains highly electronegative O atoms, exhibits the lowest exciton binding energy, the highest efficiency in charge separation and transportation, and the longest lifetime of the active charges. This leads to an impressive average H<sub>2</sub> production rate of 23.7 mmol g<sup>−1</sup> h<sup>−1</sup>, which is 2.5 and 24.5 times higher than that of TMT-BS-COF (containing S atoms) and TMT-BSe-COF (containing Se atoms), respectively. A novel photocatalytic hydrogen evolution mechanism based on proton-coupled electron transfer on N in the structure of triazine rings in vinylene-linked COFs is proposed by theoretical calculations. Our findings provide new insights into the design of highly photoactive organic framework materials for H<sub>2</sub> evolution and beyond.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"65 ","pages":"Pages 103-112"},"PeriodicalIF":15.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信