Zhaoping Shi , Ziang Wang , Hongxiang Wu , Meiling Xiao , Changpeng Liu , Wei Xing
{"title":"High-density Ir single sites from rapid ligand transformation for efficient water electrolysis","authors":"Zhaoping Shi , Ziang Wang , Hongxiang Wu , Meiling Xiao , Changpeng Liu , Wei Xing","doi":"10.1016/S1872-2067(24)60128-2","DOIUrl":"10.1016/S1872-2067(24)60128-2","url":null,"abstract":"<div><div>The development of high-performance oxygen evolution reaction catalysts with low iridium content is the key to the scale-up of proton exchange membrane water electrolyzer (PEMWE) for green hydrogen production. Single-site electrocatalysts with maximized atomic efficiency are held as promising candidates but still suffer from inadequate activity and stability in practical electrolyzer due to the low site density. Here, we proposed a NaNO<sub>3</sub>-assistant thermal decomposition strategy for the preparation of high-density Ir single sites on MnO<sub>2</sub> substrate (NaNO<sub>3</sub>-H-Ir-MnO<sub>2</sub>). Direct spectroscopic evidence suggests the inclusion of NaNO<sub>3</sub> accelerates the transformation of Ir-Cl to Ir-O coordination, thus generating uniform dispersed high-density Ir single sites in the products. The optimized H-Ir-MnO<sub>2</sub> demonstrates not only high intrinsic activity in a three-electrode set-up but also boosted performance in scalable PEMWE, requiring a cell voltage of only 1.74 V to attain a high current density of 2 A cm<sup>‒2</sup> at a low Ir loading of 0.18 mg<sub>Ir</sub> cm<sup>‒2</sup>. This work offers a new insight for enhancing the industrial practicality of Ir-based single site catalysts.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"66 ","pages":"Pages 223-232"},"PeriodicalIF":15.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142700247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Changshun Deng , Bingqing Ge , Jun Yao , Taotao Zhao , Chenyang Shen , Zhewei Zhang , Tao Wang , Xiangke Guo , Nianhua Xue , Xuefeng Guo , Luming Peng , Yan Zhu , Weiping Ding
{"title":"Surface engineering of TeOx modification on MoVTeNbO creates a high-performance catalyst for oxidation of toluene homologues to aldehydes","authors":"Changshun Deng , Bingqing Ge , Jun Yao , Taotao Zhao , Chenyang Shen , Zhewei Zhang , Tao Wang , Xiangke Guo , Nianhua Xue , Xuefeng Guo , Luming Peng , Yan Zhu , Weiping Ding","doi":"10.1016/S1872-2067(24)60137-3","DOIUrl":"10.1016/S1872-2067(24)60137-3","url":null,"abstract":"<div><div>The heterogeneous catalytic oxidation of toluene by O<sub>2</sub> is an inherently safe and green route for production of benzaldehyde, but after more than fifty years of effort, it remains a great challenge. Here, we report the best heterogeneous catalyst, TeO<sub><em>x</em></sub>/MoVTeNbO, up to now for the green oxidation of toluene by O<sub>2</sub> to benzaldehyde, balancing the catalyst activity, selectivity, and stability. The deposition of TeO<sub><em>x</em></sub> endows the MoVTeNbO composite oxide with entirely new property for toluene oxidation and the surface engineering mechanism has been fully explained. The discrete TeO<sub><em>x</em></sub> clusters on the surface, shielding the nonselective oxidation sites that interact strongly with the benzene ring of toluene molecule, allows toluene molecule to chemically adsorb to the surface perpendicularly and the methyl is then prone to oxidation to aldehyde on the reshaped selective oxidation sites, where V=O is the main active species responsible for continuously extracting hydrogen from methyl and implanting oxygen to form benzaldehyde. The TeO<sub><em>x</em></sub> clusters participate in this reaction through variable valences and stabilize benzaldehyde by couple interaction with the –CHO group of benzaldehyde, thereby achieving high selectivity to benzaldehyde (>95%). The extended works indicate that the catalytic mechanism is effective in a series of selective oxidation of toluene homologues to corresponding aldehydes.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"66 ","pages":"Pages 268-281"},"PeriodicalIF":15.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142700288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jielin Huang , Jie Wang , Haonan Duan , Songsong Chen , Junping Zhang , Li Dong , Xiangping Zhang
{"title":"Constructing mesoporous CeO2 single-crystal particles in ionic liquids for enhancing the conversion of CO2 and alcohols to carbonates","authors":"Jielin Huang , Jie Wang , Haonan Duan , Songsong Chen , Junping Zhang , Li Dong , Xiangping Zhang","doi":"10.1016/S1872-2067(24)60117-8","DOIUrl":"10.1016/S1872-2067(24)60117-8","url":null,"abstract":"<div><div>Catalysts for CO<sub>2</sub> value-added conversion have been extensively explored, but there is still a lack of systematic design for catalysts that achieve efficient CO<sub>2</sub> conversion under mild conditions. Herein, we explored a mesoporous CeO<sub>2</sub> single-crystal formed with the regulation of ionic liquids, which catalyzed the effective carbonylation reaction with CO<sub>2</sub> under mild reaction conditions. By altering the synthetic environment, a series of uniform mesoporous CeO<sub>2</sub> particles with atomically aligned single-crystal frameworks were constructed, which have different surface physicochemical properties and primary aggregation degree. The prepared mesoporous CeO<sub>2</sub> single-crystal achieved efficient activation of CO<sub>2</sub> and alcohols at 0.5 MPa CO<sub>2</sub> and 100 °C, and the CeO<sub>2</sub>-IL-M catalyst shows optimal catalytic performance in the synthesis of ethylene carbonate with 46.22 mmol g<sup>–1</sup> h<sup>–1</sup>, which was 50.6 times as high as that of the CeO<sub>2</sub> obtained without ionic liquids. Subsequently, the catalytic pathway and mechanism of carbonylation reaction with CO<sub>2</sub> on mesoporous CeO<sub>2</sub> single-crystal were studied <em>via</em> React-IR spectra and C<sup>18</sup>O<sub>2</sub> labeling experiments. The research provides a new strategy for controllable nanoscale assembly of mesoporous single-crystal materials and expands the application range of single-crystal materials, aiming to develop novel catalytic materials to meet industrial needs.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"66 ","pages":"Pages 152-167"},"PeriodicalIF":15.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142699773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinchang Xu , Yongqi Jian , Guang-Qiang Yu , Wanli Liang , Junmin Zhu , Muzi Yang , Jian Chen , Fangyan Xie , Yanshuo Jin , Nan Wang , Xi-Bo Li , Hui Meng
{"title":"Manipulating the spin configuration by topochemical transformation for optimized intermediates adsorption ability in oxygen evolution reaction","authors":"Jinchang Xu , Yongqi Jian , Guang-Qiang Yu , Wanli Liang , Junmin Zhu , Muzi Yang , Jian Chen , Fangyan Xie , Yanshuo Jin , Nan Wang , Xi-Bo Li , Hui Meng","doi":"10.1016/S1872-2067(24)60140-3","DOIUrl":"10.1016/S1872-2067(24)60140-3","url":null,"abstract":"<div><div>The underlying spin-related mechanism remains unclear, and the rational manipulation of spin states is challenging due to various spin configurations under different coordination conditions. Therefore, it is urgent to study spin-dependent oxygen evolution reaction (OER) performance through a controllable method. Herein, we adopt a topochemical reaction method to synthesize a series of selenides with <em>e</em><sub>g</sub> occupancies ranging from 1.67 to 1.37. The process begins with monoclinic-CoSeO<sub>3</sub>, featuring a distinct laminar structure and Co-O<sub>6</sub> coordination. The topochemical reaction induces significant changes in the crystal field's intensity, leading to spin state transitions. These transitions are driven by topological changes from a Co-O-Se-O-Co to a Co-Se-Co configuration, strengthening the crystalline field and reducing <em>e</em><sub>g</sub> orbital occupancy. This reconfiguration of spin states shifts the rate-determining step from desorption to adsorption for both OER and the hydrogen evolution reaction (HER), reducing the potential-determined step barrier and enhancing overall catalytic efficiency. As a result, the synthesized cobalt selenide exhibits significantly enhanced adsorption capabilities. The material demonstrates impressive overpotentials of 35 mV for HER, 250 mV for OER, and 270 mV for overall water splitting, indicating superior catalytic activity and efficiency. Additionally, a negative relation between <em>e</em><sub>g</sub> filling and OER catalytic performance confirms the spin-dependent nature of OER. Our findings provide crucial insights into the role of spin state transitions in catalytic performance.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"66 ","pages":"Pages 195-211"},"PeriodicalIF":15.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142700245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sodium thiosulfate-assisted synthesis of high-Pt-content intermetallic electrocatalysts for fuel cells","authors":"Shi-Yi Yin , Shi-Long Xu , Zi-Rui Li , Shuai Li , Kun-Ze Xue , Wanqun Zhang , Sheng-Qi Chu , Hai-Wei Liang","doi":"10.1016/S1872-2067(24)60127-0","DOIUrl":"10.1016/S1872-2067(24)60127-0","url":null,"abstract":"<div><div>Carbon supported Pt-based intermetallic compounds (IMCs) with high activity and durability are the most competitive cathode catalysts for the commercialization of proton exchange membrane fuel cells (PEMFCs). The synthesis of Pt-based intermetallics with a good balance between small size and high metal loading remains challenging because of the high-temperature annealing that is generally required to form intermetallic phases. We developed a sodium thiosulfate-assisted impregnation strategy to synthesize small-sized and highly ordered Pt<em>M</em> IMCs catalysts (<em>M</em> = Co, Fe, Ni) with high-Pt-content (up to 44.5 wt%). During the impregnation process, thiosulfate could reduce H<sub>2</sub>PtCl<sub>6</sub> to form uniformly dispersed Pt colloid on carbon supports, which in turn prevents the aggregation of Pt at the low-temperature annealing stage. Additionally, the strong interaction between Pt and S inhibits particle sintering, ensuring the formation of small-sized and uniform Pt<em>M</em> intermetallic catalysts at the high-temperature annealing stage. The optimized intermetallic PtCo catalyst delivered a high mass activity of 0.72 A mg<sub>Pt</sub><sup>–1</sup> and a large power performance of 1.17 W cm<sup>–2</sup> at 0.65 V under H<sub>2</sub>-air conditions, along with 74% mass activity retention after the accelerated stress test.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"66 ","pages":"Pages 292-301"},"PeriodicalIF":15.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142699776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shugang Sun , Yang Zhu , Letian Hong , Xuebing Li , Yu Gu , Hui Shi
{"title":"Interplay of solvent and metal identity determines rates and stereoselectivities in M(IV)-Beta-catalyzed intramolecular Prins cyclization of citronellal","authors":"Shugang Sun , Yang Zhu , Letian Hong , Xuebing Li , Yu Gu , Hui Shi","doi":"10.1016/S1872-2067(24)60122-1","DOIUrl":"10.1016/S1872-2067(24)60122-1","url":null,"abstract":"<div><div>Zeolites of *BEA framework topology containing isomorphously substituted Lewis acidic metal centers catalyze the liquid-phase intramolecular Prins cyclization of citronellal with outstanding catalytic activity and (dia-)stereoselectivity to the commercially most valuable product, isopulegol (IPL). Effects of the metal-center identity and solvent type were occasionally noted, yet without systematic studies hitherto reported. Here, characteristic dependences of catalytic activities and stereoselectivities on solvent and metal identity were uncovered over four <em>M</em>(IV)-Beta catalysts (<em>M</em> = Sn, Ti, Zr and Hf) in four distinct solvents (i.e., acetonitrile, tert-butanol, cyclohexane and <em>n</em>-hexane). Zr- and Hf-Beta were the most active in acetonitrile and the most selective (> 90% to IPL) in tert-butanol, though their activities were generally lower than Ti- and Sn-Beta in solvents other than acetonitrile. By comparison, Ti-Beta was inferior to other catalysts in terms of both activity and IPL selectivity (as previously shown) in acetonitrile but became the most active in other solvents, with markedly increased IPL selectivity from 60% to 70%‒80%. Combining multiple site discrimination and quantification techniques, turnover frequencies were determined for the first time in this reaction; such site-based activities, coupled with comprehensive kinetic interrogations, not only enabled a rigorous comparison of catalytic activities across M-Beta catalysts but also provided deeper insights into the free energy driving forces as solvent and metal identity are varied. The activity and selectivity trends, as well as those for the adsorption and intrinsic activation parameters are caused by solvent co-binding at the active site (acetonitrile and tert-butanol) and less quantifiable crowding effects (cyclohexane) due to the limited pore space and the need to accommodate relatively bulky reactant-derived moieties. This work exemplifies how the interplay of metal identity and solvent determines the reactivities and selectivities in Lewis-acid-catalyzed reactions within confined spaces.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"66 ","pages":"Pages 233-246"},"PeriodicalIF":15.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142700285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaotian Wang, Bo Hu, Yuan Li, Zhixiong Yang, Gaoke Zhang
{"title":"Dipole moment regulation by Ni doping ultrathin Bi4O5Br2 for enhancing internal electric field toward efficient photocatalytic conversion of CO2 to CO","authors":"Xiaotian Wang, Bo Hu, Yuan Li, Zhixiong Yang, Gaoke Zhang","doi":"10.1016/S1872-2067(24)60120-8","DOIUrl":"10.1016/S1872-2067(24)60120-8","url":null,"abstract":"<div><div>The low efficiency of photogenerated carrier separation, and the poor adsorption and activation ability of CO<sub>2</sub> on the surface of photocatalyst were the key problems to limit the efficiency of photocatalytic CO<sub>2</sub> reduction. Hence, maximally accelerating the immigration of photogenerated charges d increasing the number of active sites are critical points to boost the overall performance of photocatalytic CO<sub>2</sub> reduction. However, it is still huge challenge. In this work, the Ni-doped ultrathin Bi<sub>4</sub>O<sub>5</sub>Br<sub>2</sub> nanosheets, which was successfully prepared by hydrothermal and ultrasonic chemical stripping methods, exhibited efficient photocatalytic conversion of CO<sub>2</sub> to CO. The results of experiments and theoretical calculations indicated that the doped Ni<sup>2+</sup> significantly increased the crystal dipole moment of Bi<sub>4</sub>O<sub>5</sub>Br<sub>2</sub> in <em>y</em> direction (from 0 to 0.096 eÅ), which enhanced the polarized electric field strength inside Bi<sub>4</sub>O<sub>5</sub>Br<sub>2</sub>, and further promoted the immigration of photogenerated carriers. Meanwhile, the ultrathin structure and doped Ni<sup>2+</sup> synergistically increased the number of active sites, thereby promoting the adsorption and activation of CO<sub>2</sub> molecules, as evidenced by experimental and theoretical results collectively. As result, The CO yield was as high as 26.57 μmol g<sup>–1</sup> h<sup>–1</sup> for the prepared Ni-doped ultrathin Bi<sub>4</sub>O<sub>5</sub>Br<sub>2</sub> nanosheets under full spectrum light irradiation, which was 9.48 times that of Bi<sub>4</sub>O<sub>5</sub>Br<sub>2</sub>. Therefore, it is of great scientific significance in this study to explore strategies to promote the separation of photogenerated carriers and enhance the adsorption and activation ability of CO<sub>2</sub> on the surface.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"66 ","pages":"Pages 257-267"},"PeriodicalIF":15.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142700287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Photon-induced regeneration of Pd catalyst for carbonylation of amines to ureas","authors":"Junbao Peng , Jin Xie , Zelong Li , Can Li","doi":"10.1016/S1872-2067(24)60125-7","DOIUrl":"10.1016/S1872-2067(24)60125-7","url":null,"abstract":"<div><div>Substituted ureas hold considerable significance in both natural and synthetic chemicals. Pd-based homogenous catalyst has been used for the urea synthesis, however the aggregation of Pd(0) species leads to the deactivation of the catalyst even under mild conditions. Here, we present a photon-involved carbonylation of amines to synthesize ureas, achieving product yields of up to 99%, using Pd(OAc)<sub>2</sub> and KI without losing the performance owing to the fast regeneration of Pd species under light irradiation. Reaction kinetics results and ultraviolet-visible absorption spectra indicate the regeneration of the Pd species is realized by the light irradiation (below 450 nm) which induces the oxidation reaction between HI and O<sub>2</sub> to produce I<sub>2</sub>, so that the active species PdI<sub>2</sub> is regenerated through the reaction between Pd(0) and the I<sub>2</sub>.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"66 ","pages":"Pages 146-151"},"PeriodicalIF":15.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142699772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wangyang Wu , Shidan Yang , Huidan Qian , Ling Zhang , Lishan Peng , Li Li , Bin Liu , Zidong Wei
{"title":"Interface engineering of advanced electrocatalysts toward alkaline hydrogen evolution reactions","authors":"Wangyang Wu , Shidan Yang , Huidan Qian , Ling Zhang , Lishan Peng , Li Li , Bin Liu , Zidong Wei","doi":"10.1016/S1872-2067(24)60130-0","DOIUrl":"10.1016/S1872-2067(24)60130-0","url":null,"abstract":"<div><div>Developing efficient, stable, and low-cost electrocatalysts toward alkaline hydrogen evolution reactions (HER) in water electrolysis driven by renewable energy sources has always been discussed over the past decade. To reduce energy consumption and improve energy utilization efficiency, highly active electrocatalytic electrodes are essential for lowering the energy barrier of the HER. Catalysts featuring multiple interfaces have attracted significant research interest recently due to their enhanced physicochemical properties. Reasonable interface modulation can optimize intermediate active species’ adsorption energy, improve catalytic active sites’ selectivity, and enhance intrinsic catalytic activity. Here, we provided an overview of the latest advancement in interface engineering for efficient HER catalysts. We begin with a brief introduction to the fundamental concepts and mechanisms of alkaline HER. Then, we analyze and discuss current regulating principles in interface engineering for HER catalysts, focusing particularly on optimizing electron structures and modulating microenvironment reactions. Finally, the challenges and further prospects of interface catalysts for future applications are discussed.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"66 ","pages":"Pages 1-19"},"PeriodicalIF":15.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142699799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hao Liu , Bingxian Chu , Tianxiang Chen , Jie Zhou , Lihui Dong , Tsz Woon Benedict Lo , Bin Li , Xiaohui He , Hongbing Ji
{"title":"Modulation of the cobalt species state on zincosilicate to maximize propane dehydrogenation to propylene","authors":"Hao Liu , Bingxian Chu , Tianxiang Chen , Jie Zhou , Lihui Dong , Tsz Woon Benedict Lo , Bin Li , Xiaohui He , Hongbing Ji","doi":"10.1016/S1872-2067(24)60133-6","DOIUrl":"10.1016/S1872-2067(24)60133-6","url":null,"abstract":"<div><div>Dispersing metals from nanoparticles into clusters or single atoms often exhibits unique properties such as the inhibition of structure-sensitive side reactions. Here, we reported the use of ion exchange (IE) methods and direct hydrogen reduction to achieve high dispersion of Co species on zincosilicate. The obtained 2Co/Zn-4-IE catalyst achieved an initial propane conversion of 41.4% at a temperature of 550 °C in a 25% propane and 75% nitrogen atmosphere for propane dehydrogenation. Visualization of the presence of Co species within specific rings (alpha-α, beta-β and delta-δ) was obtained by aberration-corrected scanning transmission electron microscopy. A series of Fourier transform infrared spectra confirmed the anchoring of Co by specific hydroxyl groups in zincosilicate and the specific coordination environment of Co and its presence in the rings essentially as a single site. The framework Zn for the modulation of the microenvironment and the presence of Co species as Lewis acid active sites (Co-O<sub>4</sub>) was also supported by density functional theory calculations.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"66 ","pages":"Pages 168-180"},"PeriodicalIF":15.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142699774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}