Haneul Shim , Sumin Pyo , Avnish Kumar , Yasin Khani , Siyoung Q. Choi , Kanghee Cho , Jechan Lee , Young-Kwon Park
{"title":"Improvement in the production of aromatics from pyrolysis of plastic waste over Ga-modified ZSM-5 catalyst under C1-gas environment","authors":"Haneul Shim , Sumin Pyo , Avnish Kumar , Yasin Khani , Siyoung Q. Choi , Kanghee Cho , Jechan Lee , Young-Kwon Park","doi":"10.1016/S1872-2067(25)64683-3","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores, for the first time, the influence of various C1 gases, such as methane (CH<sub>4</sub>), carbon dioxide (CO<sub>2</sub>), and biogas (CH<sub>4</sub> + CO<sub>2</sub>), on catalytic pyrolysis of plastic waste (polypropylene) to evaluate their potential in producing aromatic hydrocarbons. Also, this study used the 0.5 wt%, 1 wt%, 3 wt%, and 5 wt% Ga-modified ZSM-5 catalyst and its reduction-oxidation processed catalysts owing to their promising catalytic properties. According to the results, the highest yield (39.5 wt%) of BTEX (benzene, toluene, xylene, and ethylbenzene) was achieved under CH<sub>4</sub> over RO-GHZ(1) catalyst among all tested conditions. The reduction-oxidation process not only promotes a significant reduction of the Ga-size but also induces its diffusion inside the pore, compared to GHZ(1). This leads to the formation of highly active GaO<sup>+</sup> ionic species, balancing the Lewis/Brönsted ratio, thereby accelerating the aromatization reaction. The effect of Ga loading on the RO-GHZ catalyst was also evaluated systematically, which showed a negative impact on the BTEX yield owing to the lowering in the concentration of active GaO<sup>+</sup> species. A detailed catalyst characterization supports the experimental results well.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"73 ","pages":"Pages 368-383"},"PeriodicalIF":15.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206725646833","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores, for the first time, the influence of various C1 gases, such as methane (CH4), carbon dioxide (CO2), and biogas (CH4 + CO2), on catalytic pyrolysis of plastic waste (polypropylene) to evaluate their potential in producing aromatic hydrocarbons. Also, this study used the 0.5 wt%, 1 wt%, 3 wt%, and 5 wt% Ga-modified ZSM-5 catalyst and its reduction-oxidation processed catalysts owing to their promising catalytic properties. According to the results, the highest yield (39.5 wt%) of BTEX (benzene, toluene, xylene, and ethylbenzene) was achieved under CH4 over RO-GHZ(1) catalyst among all tested conditions. The reduction-oxidation process not only promotes a significant reduction of the Ga-size but also induces its diffusion inside the pore, compared to GHZ(1). This leads to the formation of highly active GaO+ ionic species, balancing the Lewis/Brönsted ratio, thereby accelerating the aromatization reaction. The effect of Ga loading on the RO-GHZ catalyst was also evaluated systematically, which showed a negative impact on the BTEX yield owing to the lowering in the concentration of active GaO+ species. A detailed catalyst characterization supports the experimental results well.
期刊介绍:
The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.