Cerebral Cortex (New York, NY)最新文献

筛选
英文 中文
Concomitant Processing of Choice and Outcome in Frontal Corticostriatal Ensembles Correlates with Performance of Rats 额皮质纹状体组合中选择和结果的伴随加工与大鼠的表现相关
Cerebral Cortex (New York, NY) Pub Date : 2020-05-02 DOI: 10.1101/2020.05.01.071852
T. Handa, Rie Harukuni, T. Fukai
{"title":"Concomitant Processing of Choice and Outcome in Frontal Corticostriatal Ensembles Correlates with Performance of Rats","authors":"T. Handa, Rie Harukuni, T. Fukai","doi":"10.1101/2020.05.01.071852","DOIUrl":"https://doi.org/10.1101/2020.05.01.071852","url":null,"abstract":"The frontal cortex-basal ganglia network plays a pivotal role in adaptive goal-directed behaviors. Medial frontal cortex (MFC) encodes information about choices and outcomes into sequential activation of neural population, or neural trajectory. While MFC projects to the dorsal striatum (DS), whether DS also displays temporally coordinated activity remains unknown. We studied this question by simultaneously recording neural ensembles in the MFC and DS of rodents performing an outcome-based alternative choice task. We found that the two regions exhibited highly parallel evolution of neural trajectories, transforming choice information into outcome-related information. When the two trajectories were highly correlated, spike synchrony was task-dependently modulated in some MFC-DS neuron pairs. Our results suggest that neural trajectories concomitantly process decision-relevant information in MFC and DS with increased spike synchrony between these regions.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"44 1","pages":"4357 - 4375"},"PeriodicalIF":0.0,"publicationDate":"2020-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88284554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Ketamine Restores Thalamic-Prefrontal Cortex Functional Connectivity in a Mouse Model of Neurodevelopmental Disorder-Associated 2p16.3 Deletion. 氯胺酮在神经发育障碍相关2p16.3缺失小鼠模型中恢复丘脑-前额叶皮质功能连接
Cerebral Cortex (New York, NY) Pub Date : 2020-04-14 DOI: 10.1093/cercor/bhz244
Rebecca B Hughes, Jayde Whittingham-Dowd, Rachel E Simmons, Steven J Clapcote, Susan J Broughton, Neil Dawson
{"title":"Ketamine Restores Thalamic-Prefrontal Cortex Functional Connectivity in a Mouse Model of Neurodevelopmental Disorder-Associated 2p16.3 Deletion.","authors":"Rebecca B Hughes, Jayde Whittingham-Dowd, Rachel E Simmons, Steven J Clapcote, Susan J Broughton, Neil Dawson","doi":"10.1093/cercor/bhz244","DOIUrl":"10.1093/cercor/bhz244","url":null,"abstract":"<p><p>2p16.3 deletions, involving heterozygous NEUREXIN1 (NRXN1) deletion, dramatically increase the risk of developing neurodevelopmental disorders, including autism and schizophrenia. We have little understanding of how NRXN1 heterozygosity increases the risk of developing these disorders, particularly in terms of the impact on brain and neurotransmitter system function and brain network connectivity. Thus, here we characterize cerebral metabolism and functional brain network connectivity in Nrxn1α heterozygous mice (Nrxn1α+/- mice), and assess the impact of ketamine and dextro-amphetamine on cerebral metabolism in these animals. We show that heterozygous Nrxn1α deletion alters cerebral metabolism in neural systems implicated in autism and schizophrenia including the thalamus, mesolimbic system, and select cortical regions. Nrxn1α heterozygosity also reduces the efficiency of functional brain networks, through lost thalamic \"rich club\" and prefrontal cortex (PFC) hub connectivity and through reduced thalamic-PFC and thalamic \"rich club\" regional interconnectivity. Subanesthetic ketamine administration normalizes the thalamic hypermetabolism and partially normalizes thalamic disconnectivity present in Nrxn1α+/- mice, while cerebral metabolic responses to dextro-amphetamine are unaltered. The data provide new insight into the systems-level impact of heterozygous Nrxn1α deletion and how this increases the risk of developing neurodevelopmental disorders. The data also suggest that the thalamic dysfunction induced by heterozygous Nrxn1α deletion may be NMDA receptor-dependent.</p>","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"80 1","pages":"2358-2371"},"PeriodicalIF":0.0,"publicationDate":"2020-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175007/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81559490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex Matters: A Multivariate Pattern Analysis of Sex- and Gender-Related Neuroanatomical Differences in Cis- and Transgender Individuals Using Structural Magnetic Resonance Imaging. 性别问题:使用结构磁共振成像对顺式和跨性别个体中与性别和性别相关的神经解剖学差异的多变量模式分析。
Cerebral Cortex (New York, NY) Pub Date : 2020-03-14 DOI: 10.1093/cercor/bhz170
Pia Baldinger-Melich, Maria F Urquijo Castro, René Seiger, Anne Ruef, Dominic B Dwyer, Georg S Kranz, Manfred Klöbl, Joseph Kambeitz, Ulrike Kaufmann, Christian Windischberger, Siegfried Kasper, Peter Falkai, Rupert Lanzenberger, Nikolaos Koutsouleris
{"title":"Sex Matters: A Multivariate Pattern Analysis of Sex- and Gender-Related Neuroanatomical Differences in Cis- and Transgender Individuals Using Structural Magnetic Resonance Imaging.","authors":"Pia Baldinger-Melich, Maria F Urquijo Castro, René Seiger, Anne Ruef, Dominic B Dwyer, Georg S Kranz, Manfred Klöbl, Joseph Kambeitz, Ulrike Kaufmann, Christian Windischberger, Siegfried Kasper, Peter Falkai, Rupert Lanzenberger, Nikolaos Koutsouleris","doi":"10.1093/cercor/bhz170","DOIUrl":"10.1093/cercor/bhz170","url":null,"abstract":"<p><p>Univariate analyses of structural neuroimaging data have produced heterogeneous results regarding anatomical sex- and gender-related differences. The current study aimed at delineating and cross-validating brain volumetric surrogates of sex and gender by comparing the structural magnetic resonance imaging data of cis- and transgender subjects using multivariate pattern analysis. Gray matter (GM) tissue maps of 29 transgender men, 23 transgender women, 35 cisgender women, and 34 cisgender men were created using voxel-based morphometry and analyzed using support vector classification. Generalizability of the models was estimated using repeated nested cross-validation. For external validation, significant models were applied to hormone-treated transgender subjects (n = 32) and individuals diagnosed with depression (n = 27). Sex was identified with a balanced accuracy (BAC) of 82.6% (false discovery rate [pFDR] < 0.001) in cisgender, but only with 67.5% (pFDR = 0.04) in transgender participants indicating differences in the neuroanatomical patterns associated with sex in transgender despite the major effect of sex on GM volume irrespective of the self-identification as a woman or man. Gender identity and gender incongruence could not be reliably identified (all pFDR > 0.05). The neuroanatomical signature of sex in cisgender did not interact with depressive features (BAC = 74.7%) but was affected by hormone therapy when applied in transgender women (P < 0.001).</p>","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"1 1","pages":"1345-1356"},"PeriodicalIF":0.0,"publicationDate":"2020-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7132951/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75416174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Creative Destruction: A Basic Computational Model of Cortical Layer Formation 创造性破坏:皮质层形成的基本计算模型
Cerebral Cortex (New York, NY) Pub Date : 2020-01-29 DOI: 10.1101/2020.01.29.921999
R. Bauer, G. Clowry, Marcus Kaiser
{"title":"Creative Destruction: A Basic Computational Model of Cortical Layer Formation","authors":"R. Bauer, G. Clowry, Marcus Kaiser","doi":"10.1101/2020.01.29.921999","DOIUrl":"https://doi.org/10.1101/2020.01.29.921999","url":null,"abstract":"One of the most characteristic properties of many vertebrate neural systems is the layered organization of different cell types. This cytoarchitecture exists in the cortex, the retina, the hippocampus and many other parts of the central nervous system. The developmental mechanisms of neural layer formation have been subject to substantial experimental efforts. Here, we provide a general computational model for cortical layer formation in 3D physical space. We show that this multi-scale, agent-based model comprising two distinct stages of apoptosis, can account for the wide range of neuronal numbers encountered in different cortical areas and species. Our results demonstrate the phenotypic richness of a basic state diagram structure, and suggest a novel function for apoptosis. Moreover, slightly changed gene regulatory dynamics recapitulate characteristic properties observed in neurodevelopmental diseases. Overall, we propose a novel computational model using gene-type rules, exhibiting many characteristics of normal and pathological cortical development.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"38 1","pages":"3237 - 3253"},"PeriodicalIF":0.0,"publicationDate":"2020-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77314026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Hierarchical Complexity of the Macro-Scale Neonatal Brain 宏观新生儿大脑的层次复杂性
Cerebral Cortex (New York, NY) Pub Date : 2020-01-17 DOI: 10.1101/2020.01.16.909150
M. Blesa, P. Galdi, S. Cox, G. Sullivan, D. Stoye, G. Lamb, A. Quigley, M. Thrippleton, J. Escudero, M. Bastin, Keith M. Smith, J. Boardman
{"title":"Hierarchical Complexity of the Macro-Scale Neonatal Brain","authors":"M. Blesa, P. Galdi, S. Cox, G. Sullivan, D. Stoye, G. Lamb, A. Quigley, M. Thrippleton, J. Escudero, M. Bastin, Keith M. Smith, J. Boardman","doi":"10.1101/2020.01.16.909150","DOIUrl":"https://doi.org/10.1101/2020.01.16.909150","url":null,"abstract":"The human adult structural connectome has a rich nodal hierarchy, with highly diverse connectivity patterns aligned to the diverse range of functional specializations in the brain. The emergence of this hierarchical complexity in human development is unknown. Here, we substantiate the hierarchical tiers and hierarchical complexity of brain networks in the newborn period; assess correspondences with hierarchical complexity in adulthood; and investigate the effect of preterm birth, a leading cause of atypical brain development and later neurocognitive impairment, on hierarchical complexity. We report that neonatal and adult structural connectomes are both composed of distinct hierarchical tiers, and that hierarchical complexity is greater in term born neonates than in preterms. This is due to diversity of connectivity patterns of regions within the intermediate tiers, which consist of regions that underlie sensorimotor processing and its integration with cognitive information. For neonates and adults, the highest tier (hub regions) is ordered, rather than complex, with more homogeneous connectivity patterns in structural hubs. This suggests that the brain develops first a more rigid structure in hub regions allowing for the development of greater and more diverse functional specialization in lower level regions, while connectivity underpinning this diversity is dysmature in infants born preterm.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"65 1","pages":"2071 - 2084"},"PeriodicalIF":0.0,"publicationDate":"2020-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87165166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
The Graded Change in Connectivity across the Ventromedial Prefrontal Cortex Reveals Distinct Subregions. 腹内侧前额叶皮层连通性的分级变化揭示了不同的亚区。
Cerebral Cortex (New York, NY) Pub Date : 2020-01-10 DOI: 10.1093/cercor/bhz079
Rebecca L Jackson, Claude J Bajada, Matthew A Lambon Ralph, Lauren L Cloutman
{"title":"The Graded Change in Connectivity across the Ventromedial Prefrontal Cortex Reveals Distinct Subregions.","authors":"Rebecca L Jackson, Claude J Bajada, Matthew A Lambon Ralph, Lauren L Cloutman","doi":"10.1093/cercor/bhz079","DOIUrl":"10.1093/cercor/bhz079","url":null,"abstract":"<p><p>The functional heterogeneity of the ventromedial prefrontal cortex (vmPFC) suggests it may include distinct functional subregions. To date these have not been well elucidated. Regions with differentiable connectivity (and as a result likely dissociable functions) may be identified using emergent data-driven approaches. However, prior parcellations of the vmPFC have only considered hard splits between distinct regions, although both hard and graded connectivity changes may exist. Here we determine the full pattern of change in structural and functional connectivity across the vmPFC for the first time and extract core distinct regions. Both structural and functional connectivity varied along a dorsomedial to ventrolateral axis from relatively dorsal medial wall regions to relatively lateral basal orbitofrontal cortex. The pattern of connectivity shifted from default mode network to sensorimotor and multimodal semantic connections. This finding extends the classical distinction between primate medial and orbital regions by demonstrating a similar gradient in humans for the first time. Additionally, core distinct regions in the medial wall and orbitofrontal cortex were identified that may show greater correspondence to functional differences than prior hard parcellations. The possible functional roles of the orbitofrontal cortex and medial wall are discussed.</p>","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"17 1","pages":"165-180"},"PeriodicalIF":0.0,"publicationDate":"2020-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7029692/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77789608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Ventral Striatum is a Key Node for Functional Recovery of Finger Dexterity After Spinal Cord Injury in Monkeys 腹侧纹状体是猴脊髓损伤后手指灵巧功能恢复的关键节点
Cerebral Cortex (New York, NY) Pub Date : 2019-12-09 DOI: 10.1093/cercor/bhz307
Michiaki Suzuki, K. Onoe, M. Sawada, Nobuaki Takahashi, N. Higo, Y. Murata, H. Tsukada, T. Isa, H. Onoe, Y. Nishimura
{"title":"The Ventral Striatum is a Key Node for Functional Recovery of Finger Dexterity After Spinal Cord Injury in Monkeys","authors":"Michiaki Suzuki, K. Onoe, M. Sawada, Nobuaki Takahashi, N. Higo, Y. Murata, H. Tsukada, T. Isa, H. Onoe, Y. Nishimura","doi":"10.1093/cercor/bhz307","DOIUrl":"https://doi.org/10.1093/cercor/bhz307","url":null,"abstract":"Abstract In a recent study, we demonstrated that the ventral striatum (VSt) controls finger movements directly during the early recovery stage after spinal cord injury (SCI), implying that the VSt may be a part of neural substrates responsible for the recovery of dexterous finger movements. The VSt is accepted widely as a key node for motivation, but is not thought to be involved in the direct control of limb movements. Therefore, whether a causal relationship exists between the VSt and motor recovery after SCI is unknown, and the role of the VSt in the recovery of dexterous finger movements orfinger movements in general after SCI remains unclear. In the present study, functional brain imaging in a macaque model of SCI revealed a strengthened functional connectivity between motor-related areas and the VSt during the recovery process for precision grip, but not whole finger grip after SCI. Furthermore, permanent lesion of the VSt impeded the recoveryof precision grip, but not coarse grip. Thus, the VSt was needed specifically for functional recovery of dexterous finger movements. These results suggest that the VSt is the key node of the cortical reorganization required for functional recovery of finger dexterity.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"09 1","pages":"3259 - 3270"},"PeriodicalIF":0.0,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86120032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Differential White Matter Maturation from Birth to 8 Years of Age 从出生到8岁的白质成熟度差异
Cerebral Cortex (New York, NY) Pub Date : 2019-12-09 DOI: 10.1093/cercor/bhz268
Qinlin Yu, Yun Peng, Huiying Kang, Qinmu Peng, M. Ouyang, Michelle Slinger, D. Hu, H. Shou, Fang Fang, Hao Huang
{"title":"Differential White Matter Maturation from Birth to 8 Years of Age","authors":"Qinlin Yu, Yun Peng, Huiying Kang, Qinmu Peng, M. Ouyang, Michelle Slinger, D. Hu, H. Shou, Fang Fang, Hao Huang","doi":"10.1093/cercor/bhz268","DOIUrl":"https://doi.org/10.1093/cercor/bhz268","url":null,"abstract":"Abstract Comprehensive delineation of white matter (WM) microstructural maturation from birth to childhood is critical for understanding spatiotemporally differential circuit formation. Without a relatively large sample of datasets and coverage of critical developmental periods of both infancy and early childhood, differential maturational charts across WM tracts cannot be delineated. With diffusion tensor imaging (DTI) of 118 typically developing (TD) children aged 0–8 years and 31 children with autistic spectrum disorder (ASD) aged 2–7 years, the microstructure of every major WM tract and tract group was measured with DTI metrics to delineate differential WM maturation. The exponential model of microstructural maturation of all WM was identified. The WM developmental curves were separated into fast, intermediate, and slow phases in 0–8 years with distinctive time period of each phase across the tracts. Shorter periods of the fast and intermediate phases in certain tracts, such as the commissural tracts, indicated faster earlier development. With TD WM maturational curves as the reference, higher residual variance of WM microstructure was found in children with ASD. The presented comprehensive and differential charts of TD WM microstructural maturation of all major tracts and tract groups in 0–8 years provide reference standards for biomarker detection of neuropsychiatric disorders.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"61 1","pages":"2674 - 2690"},"PeriodicalIF":0.0,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83681849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 30
Granule Cell Ensembles in Mouse Dentate Gyrus Rapidly Upregulate the Plasticity-Related Protein Synaptopodin after Exploration Behavior 探索行为后,小鼠齿状回颗粒细胞群快速上调可塑性相关蛋白Synaptopodin
Cerebral Cortex (New York, NY) Pub Date : 2019-12-08 DOI: 10.1093/cercor/bhz231
Mandy H. Paul, M. Choi, J. Schlaudraff, T. Deller, D. Del Turco
{"title":"Granule Cell Ensembles in Mouse Dentate Gyrus Rapidly Upregulate the Plasticity-Related Protein Synaptopodin after Exploration Behavior","authors":"Mandy H. Paul, M. Choi, J. Schlaudraff, T. Deller, D. Del Turco","doi":"10.1093/cercor/bhz231","DOIUrl":"https://doi.org/10.1093/cercor/bhz231","url":null,"abstract":"Abstract The plasticity-related protein Synaptopodin (SP) has been implicated in neuronal plasticity. SP is targeted to dendritic spines and the axon initial segment, where it organizes the endoplasmic reticulum (ER) into the spine apparatus and the cisternal organelle, respectively. Here, we report an inducible third localization of SP in the somata of activated granule cell ensembles in mouse dentate gyrus. Using immunofluorescence and fluorescence in situ hybridization, we observed a subpopulation of mature granule cells (~1–2%) exhibiting perinuclear SP protein and a strong somatic SP mRNA signal. Double immunofluorescence labeling for Arc demonstrated that ~ 75% of these somatic SP-positive cells are also Arc-positive. Placement of mice into a novel environment caused a rapid (~2–4 h) induction of Arc, SP mRNA, and SP protein in exploration-induced granule cell ensembles. Lesion experiments showed that this induction requires input from the entorhinal cortex. Somatic SP colocalized with α-Actinin2, a known binding partner of SP. Finally, ultrastructural analysis revealed SP immunoprecipitate on dense plates linking cytoplasmic and perinuclear ER cisterns; these structures were absent in granule cells of SP-deficient mice. Our data implicate SP in the formation of contextual representations in the dentate gyrus and the behaviorally induced reorganization of cytoplasmic and perinuclear ER.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"9 1","pages":"2185 - 2198"},"PeriodicalIF":0.0,"publicationDate":"2019-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75234167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Ultrastructural Evidence for a Role of Astrocytes and Glycogen-Derived Lactate in Learning-Dependent Synaptic Stabilization 星形胶质细胞和糖原来源乳酸在学习依赖性突触稳定中的作用的超微结构证据
Cerebral Cortex (New York, NY) Pub Date : 2019-12-06 DOI: 10.1093/cercor/bhz226
E. Vezzoli, C. Calì, M. De Roo, L. Ponzoni, E. Sogne, N. Gagnon, M. Francolini, D. Braida, M. Sala, D. Muller, A. Falqui, P. Magistretti
{"title":"Ultrastructural Evidence for a Role of Astrocytes and Glycogen-Derived Lactate in Learning-Dependent Synaptic Stabilization","authors":"E. Vezzoli, C. Calì, M. De Roo, L. Ponzoni, E. Sogne, N. Gagnon, M. Francolini, D. Braida, M. Sala, D. Muller, A. Falqui, P. Magistretti","doi":"10.1093/cercor/bhz226","DOIUrl":"https://doi.org/10.1093/cercor/bhz226","url":null,"abstract":"Abstract Long-term memory formation (LTM) is a process accompanied by energy-demanding structural changes at synapses and increased spine density. Concomitant increases in both spine volume and postsynaptic density (PSD) surface area have been suggested but never quantified in vivo by clear-cut experimental evidence. Using novel object recognition in mice as a learning task followed by 3D electron microscopy analysis, we demonstrate that LTM induced all aforementioned synaptic changes, together with an increase in the size of astrocytic glycogen granules, which are a source of lactate for neurons. The selective inhibition of glycogen metabolism in astrocytes impaired learning, affecting all the related synaptic changes. Intrahippocampal administration of l-lactate rescued the behavioral phenotype, along with spine density within 24 hours. Spine dynamics in hippocampal organotypic slices undergoing theta burst-induced long-term potentiation was similarly affected by inhibition of glycogen metabolism and rescued by l-lactate. These results suggest that learning primes astrocytic energy stores and signaling to sustain synaptic plasticity via l-lactate.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"15 3 1","pages":"2114 - 2127"},"PeriodicalIF":0.0,"publicationDate":"2019-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77374903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 39
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信