Granule Cell Ensembles in Mouse Dentate Gyrus Rapidly Upregulate the Plasticity-Related Protein Synaptopodin after Exploration Behavior

Mandy H. Paul, M. Choi, J. Schlaudraff, T. Deller, D. Del Turco
{"title":"Granule Cell Ensembles in Mouse Dentate Gyrus Rapidly Upregulate the Plasticity-Related Protein Synaptopodin after Exploration Behavior","authors":"Mandy H. Paul, M. Choi, J. Schlaudraff, T. Deller, D. Del Turco","doi":"10.1093/cercor/bhz231","DOIUrl":null,"url":null,"abstract":"Abstract The plasticity-related protein Synaptopodin (SP) has been implicated in neuronal plasticity. SP is targeted to dendritic spines and the axon initial segment, where it organizes the endoplasmic reticulum (ER) into the spine apparatus and the cisternal organelle, respectively. Here, we report an inducible third localization of SP in the somata of activated granule cell ensembles in mouse dentate gyrus. Using immunofluorescence and fluorescence in situ hybridization, we observed a subpopulation of mature granule cells (~1–2%) exhibiting perinuclear SP protein and a strong somatic SP mRNA signal. Double immunofluorescence labeling for Arc demonstrated that ~ 75% of these somatic SP-positive cells are also Arc-positive. Placement of mice into a novel environment caused a rapid (~2–4 h) induction of Arc, SP mRNA, and SP protein in exploration-induced granule cell ensembles. Lesion experiments showed that this induction requires input from the entorhinal cortex. Somatic SP colocalized with α-Actinin2, a known binding partner of SP. Finally, ultrastructural analysis revealed SP immunoprecipitate on dense plates linking cytoplasmic and perinuclear ER cisterns; these structures were absent in granule cells of SP-deficient mice. Our data implicate SP in the formation of contextual representations in the dentate gyrus and the behaviorally induced reorganization of cytoplasmic and perinuclear ER.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"9 1","pages":"2185 - 2198"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral Cortex (New York, NY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/cercor/bhz231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract The plasticity-related protein Synaptopodin (SP) has been implicated in neuronal plasticity. SP is targeted to dendritic spines and the axon initial segment, where it organizes the endoplasmic reticulum (ER) into the spine apparatus and the cisternal organelle, respectively. Here, we report an inducible third localization of SP in the somata of activated granule cell ensembles in mouse dentate gyrus. Using immunofluorescence and fluorescence in situ hybridization, we observed a subpopulation of mature granule cells (~1–2%) exhibiting perinuclear SP protein and a strong somatic SP mRNA signal. Double immunofluorescence labeling for Arc demonstrated that ~ 75% of these somatic SP-positive cells are also Arc-positive. Placement of mice into a novel environment caused a rapid (~2–4 h) induction of Arc, SP mRNA, and SP protein in exploration-induced granule cell ensembles. Lesion experiments showed that this induction requires input from the entorhinal cortex. Somatic SP colocalized with α-Actinin2, a known binding partner of SP. Finally, ultrastructural analysis revealed SP immunoprecipitate on dense plates linking cytoplasmic and perinuclear ER cisterns; these structures were absent in granule cells of SP-deficient mice. Our data implicate SP in the formation of contextual representations in the dentate gyrus and the behaviorally induced reorganization of cytoplasmic and perinuclear ER.
探索行为后,小鼠齿状回颗粒细胞群快速上调可塑性相关蛋白Synaptopodin
可塑性相关蛋白Synaptopodin (SP)与神经元的可塑性有关。SP以树突棘和轴突起始段为靶点,分别将内质网(ER)组织到脊柱器官和池细胞器中。在这里,我们报道了在小鼠齿状回活化颗粒细胞群的体中诱导SP的第三个定位。利用免疫荧光和荧光原位杂交技术,我们观察到成熟颗粒细胞亚群(~ 1-2%)表现出核周SP蛋白和强烈的体细胞SP mRNA信号。双免疫荧光标记表明,约75%的体细胞sp阳性细胞也是Arc阳性。将小鼠置于一个新的环境中,可以在探索诱导的颗粒细胞群中快速(~ 2-4小时)诱导Arc、SP mRNA和SP蛋白。病变实验表明,这种诱导需要内嗅皮层的输入。体细胞SP与α- actiin2共定位,α- actiin2是SP的已知结合伙伴。最后,超微结构分析显示SP在连接细胞质和核周ER池的致密板上有免疫沉淀;这些结构在sp缺陷小鼠颗粒细胞中不存在。我们的数据表明SP参与了齿状回中上下文表征的形成以及行为诱导的细胞质和核周内质网重组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信