CCS ChemistryPub Date : 2024-07-26DOI: 10.31635/ccschem.024.202404344
Chenjia Liang, Ruiyao Zhao, Xiaoxia Hou, Jun Yao, Liwen Wang, Teng Chen, Yingxuan Zhao, Taotao Zhao, Jie Yang, Rurong Liu, Xianghao Wang, Xiangke Guo, Nianhua Xue, Luming Peng, Tao Wang, Xuefeng Guo, Xiaomei Zhao, Yan Zhu, Weiping Ding
{"title":"Internal and External Cooperation of Pt/SiC-Ni Catalyst Affording Unexpected Performance of Direct Methanol Fuel Cell","authors":"Chenjia Liang, Ruiyao Zhao, Xiaoxia Hou, Jun Yao, Liwen Wang, Teng Chen, Yingxuan Zhao, Taotao Zhao, Jie Yang, Rurong Liu, Xianghao Wang, Xiangke Guo, Nianhua Xue, Luming Peng, Tao Wang, Xuefeng Guo, Xiaomei Zhao, Yan Zhu, Weiping Ding","doi":"10.31635/ccschem.024.202404344","DOIUrl":"https://doi.org/10.31635/ccschem.024.202404344","url":null,"abstract":"<p>We present here an unexpected active and robust catalyst Pt/SiC-Ni, affording a high-performance direct methanol fuel cell (DMFC) with proton exchange membrane. The unique Ni-doped SiC support is obtained by an unusual method through the reaction deposition of CH<sub>4</sub> with NiSi<sub>2</sub> nanoalloys at low temperatures, in open spherical-shell morphology composed of SiC-Ni nanosheets, possessing high specific surface area (410 m<sup>2</sup> g<sup>−1</sup>) and high conductivity. The membrane electrode assembly achieves a power of ∼1.12 kW g<sub>Pt</sub><sup>−1</sup> in DMFC with the Pt/SiC-Ni as the anodic catalyst. There are various coordination effects between the high surface area SiC with internally doped Ni and the externally loaded Pt NPs including surface reaction and mass transfer, which endows the DMFC with high power and stability. Additionally, differential electrochemical mass spectrometry and TGA-MS demonstrate the challenge of support corrosion has been significantly solved, another key factor for improving durability. The abovementioned findings are the first to demonstrate that metal-doping modified SiC materials loaded with Pt will be a highly promising catalyst for DMFC applications.</p>","PeriodicalId":9810,"journal":{"name":"CCS Chemistry","volume":"29 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141768593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CCS ChemistryPub Date : 2024-07-26DOI: 10.31635/ccschem.024.202404389
Jia-Heng Fang, Ji-Jun Chen, Xuan-Yi Du, Zhe Dong, Run-Yan Tian, Chang-Jiang Yang, Fu-Li Wang, Cheng Luan, Zhong-Liang Li, Xin-Yuan Liu
{"title":"Copper-Catalyzed Asymmetric Three-Component Radical 1,2-Carboamination of Acrylamides with Arylamines: Access to Chiral α-Tertiary N-Arylamines","authors":"Jia-Heng Fang, Ji-Jun Chen, Xuan-Yi Du, Zhe Dong, Run-Yan Tian, Chang-Jiang Yang, Fu-Li Wang, Cheng Luan, Zhong-Liang Li, Xin-Yuan Liu","doi":"10.31635/ccschem.024.202404389","DOIUrl":"https://doi.org/10.31635/ccschem.024.202404389","url":null,"abstract":"<p>The asymmetric radical carboamination of 1,1-disubstituted alkenes from readily available alkyl halides and arylamines provides expedient access to value-added chiral α-tertiary <i>N</i>-arylamines but has been less recognized. A challenge arises mainly from the difficult reaction initiation inherent in alkyl halides and the construction of fully substituted chiral C–N bonds from sterically congested tertiary alkyl radicals. Herein, we report a copper-catalyzed asymmetric three-component radical carboamination of acrylamides utilizing an anionic chiral <i>N,N,N</i>-ligand under mild conditions. This ligand was essential for the reaction initiation by enhancing the reducing capability of copper and enabling the enantiocontrol over tertiary alkyl radicals. The substrate scope was broad, covering an array of acrylamides, aryl- and heteroaryl-amines, as well as alkyl halides and sulfonyl chlorides, enabling good functional group tolerance. When combined with the follow-up transformation, this strategy provides a versatile platform for accessing structurally diverse chiral α-tertiary <i>N</i>-arylamine building blocks of interest in organic synthesis.</p>","PeriodicalId":9810,"journal":{"name":"CCS Chemistry","volume":"10 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141768591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CCS ChemistryPub Date : 2024-07-26DOI: 10.31635/ccschem.024.202404442
{"title":"In-vivo Polyvalent Aptamer@Protein-Based Nanocarrier with Synergistic Charge Effect for High Drug Loading, High Nuclease Resistance, and High Receptor Accessibility","authors":"","doi":"10.31635/ccschem.024.202404442","DOIUrl":"https://doi.org/10.31635/ccschem.024.202404442","url":null,"abstract":"CCS Chemistry, Ahead of Print.<br/>","PeriodicalId":9810,"journal":{"name":"CCS Chemistry","volume":"302 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141768592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CCS ChemistryPub Date : 2024-07-15DOI: 10.31635/ccschem.024.202404341
{"title":"Alkynol-Supported New Cascade Strategy for Eco-Friendly Conversion of CO2 into 1,3-Oxazinan-2-ones Catalyzed by Strong-Acid/Base-Resistant Metal–Organic Framework","authors":"","doi":"10.31635/ccschem.024.202404341","DOIUrl":"https://doi.org/10.31635/ccschem.024.202404341","url":null,"abstract":"CCS Chemistry, Ahead of Print.<br/>","PeriodicalId":9810,"journal":{"name":"CCS Chemistry","volume":"33 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141625106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CCS ChemistryPub Date : 2024-07-05DOI: 10.31635/ccschem.024.202404398
{"title":"What Can Topology Bring to Chemistry?","authors":"","doi":"10.31635/ccschem.024.202404398","DOIUrl":"https://doi.org/10.31635/ccschem.024.202404398","url":null,"abstract":"CCS Chemistry, Ahead of Print.<br/>","PeriodicalId":9810,"journal":{"name":"CCS Chemistry","volume":"16 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141553530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CCS ChemistryPub Date : 2024-07-04DOI: 10.31635/ccschem.024.202404323
{"title":"Integrated Device for Osmotic Energy Collection and Detection Based on the Metal–Organic Framework of Nanoconfinement Channels","authors":"","doi":"10.31635/ccschem.024.202404323","DOIUrl":"https://doi.org/10.31635/ccschem.024.202404323","url":null,"abstract":"CCS Chemistry, Ahead of Print.<br/>","PeriodicalId":9810,"journal":{"name":"CCS Chemistry","volume":"69 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141546273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}