在肖特基结中整合钯(I)原子,利用可见光驱动环境含氮物质和 CO 2 生产尿素

IF 9.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wei-Yao Hu, Qi-Yuan Li, Dong Xu, Peng Gao, Pan-Zhe Qiao, Dong Li, Si-Yuan Xia, Xiu Lin, Jie-Sheng Chen, Xin-Hao Li
{"title":"在肖特基结中整合钯(I)原子,利用可见光驱动环境含氮物质和 CO 2 生产尿素","authors":"Wei-Yao Hu, Qi-Yuan Li, Dong Xu, Peng Gao, Pan-Zhe Qiao, Dong Li, Si-Yuan Xia, Xiu Lin, Jie-Sheng Chen, Xin-Hao Li","doi":"10.31635/ccschem.024.202404490","DOIUrl":null,"url":null,"abstract":"<p>The mass production of urea, the most widely used agricultural fertilizer, usually relies on energy- and carbon-intensive processes. The light-driven synthesis path has great potential for more sustainable techniques to produce urea from abundant naturally occurring resources, but this method suffers from the use of pure CO<sub>2</sub> and high-energy-driven forces (high temperature or ultraviolet light). Herein, we present a mild photocatalytic pathway for urea production from diverse nitrogenous species (such as NO<sub>3</sub><sup>−</sup>, NH<sub>3</sub>, and N<sub>2</sub>) and diluted CO<sub>2</sub> using visible light. We designed a palladium (Pd)-doped Schottky heterojunction, composed of graphene and titanium dioxide, as an effective photocatalyst to achieve on-farm urea generation. With the injection of visible-light-generated hot electrons from graphene to TiO<sub>2</sub>, the as-integrated Pd(I) centers with a special oxidation state of +1.36 in the TiO<sub>2</sub> lattice can initiate the universal reaction path of cascade reduction of NO<sub>3</sub><sup>−</sup>/N<sub>2</sub> to NH<sub>3</sub> and resulting C–N coupling of CO<sub>2</sub> with as-formed or added NH<sub>3</sub> to transform diverse nitrogenous species and CO<sub>2</sub> into urea. The urea yield over the <i>at.</i>-Pd@TiO<sub>2</sub>/Gr photocatalyst is 1.62 mmol g<sup>−1</sup> h<sup>−1</sup> under visible-light irradiation with an apparent quantum yield of 1.05% at 400 nm and 0.39% even at 700 nm.</p>","PeriodicalId":9810,"journal":{"name":"CCS Chemistry","volume":"80 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Pd(I) Atoms in Schottky Junctions for Visible-Light-Driven Urea Production from Ambient Nitrogenous Species and CO 2\",\"authors\":\"Wei-Yao Hu, Qi-Yuan Li, Dong Xu, Peng Gao, Pan-Zhe Qiao, Dong Li, Si-Yuan Xia, Xiu Lin, Jie-Sheng Chen, Xin-Hao Li\",\"doi\":\"10.31635/ccschem.024.202404490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The mass production of urea, the most widely used agricultural fertilizer, usually relies on energy- and carbon-intensive processes. The light-driven synthesis path has great potential for more sustainable techniques to produce urea from abundant naturally occurring resources, but this method suffers from the use of pure CO<sub>2</sub> and high-energy-driven forces (high temperature or ultraviolet light). Herein, we present a mild photocatalytic pathway for urea production from diverse nitrogenous species (such as NO<sub>3</sub><sup>−</sup>, NH<sub>3</sub>, and N<sub>2</sub>) and diluted CO<sub>2</sub> using visible light. We designed a palladium (Pd)-doped Schottky heterojunction, composed of graphene and titanium dioxide, as an effective photocatalyst to achieve on-farm urea generation. With the injection of visible-light-generated hot electrons from graphene to TiO<sub>2</sub>, the as-integrated Pd(I) centers with a special oxidation state of +1.36 in the TiO<sub>2</sub> lattice can initiate the universal reaction path of cascade reduction of NO<sub>3</sub><sup>−</sup>/N<sub>2</sub> to NH<sub>3</sub> and resulting C–N coupling of CO<sub>2</sub> with as-formed or added NH<sub>3</sub> to transform diverse nitrogenous species and CO<sub>2</sub> into urea. The urea yield over the <i>at.</i>-Pd@TiO<sub>2</sub>/Gr photocatalyst is 1.62 mmol g<sup>−1</sup> h<sup>−1</sup> under visible-light irradiation with an apparent quantum yield of 1.05% at 400 nm and 0.39% even at 700 nm.</p>\",\"PeriodicalId\":9810,\"journal\":{\"name\":\"CCS Chemistry\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CCS Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31635/ccschem.024.202404490\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CCS Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31635/ccschem.024.202404490","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

尿素是最广泛使用的农用肥料,其大规模生产通常依赖于能源和碳密集型工艺。光驱动合成途径在利用丰富的天然资源生产尿素的可持续技术方面具有巨大潜力,但这种方法存在使用纯二氧化碳和高能驱动力(高温或紫外线)的问题。在此,我们提出了一种温和的光催化途径,利用可见光从多种含氮物质(如 NO3-、NH3 和 N2)和稀释的 CO2 中生产尿素。我们设计了一种由石墨烯和二氧化钛组成的掺钯 (Pd) 肖特基异质结,作为实现农场尿素生产的有效光催化剂。随着可见光产生的热电子从石墨烯注入二氧化钛,二氧化钛晶格中特殊氧化态为+1.36的钯(I)中心可启动NO3-/N2级联还原为NH3的普遍反应路径,并导致CO2与原形成或添加的NH3发生C-N偶联,从而将多种含氮物质和CO2转化为尿素。在可见光照射下,at.-Pd@TiO2/Gr 光催化剂的尿素产率为 1.62 mmol g-1 h-1,400 纳米波长下的表观量子产率为 1.05%,700 纳米波长下的表观量子产率为 0.39%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating Pd(I) Atoms in Schottky Junctions for Visible-Light-Driven Urea Production from Ambient Nitrogenous Species and CO 2

The mass production of urea, the most widely used agricultural fertilizer, usually relies on energy- and carbon-intensive processes. The light-driven synthesis path has great potential for more sustainable techniques to produce urea from abundant naturally occurring resources, but this method suffers from the use of pure CO2 and high-energy-driven forces (high temperature or ultraviolet light). Herein, we present a mild photocatalytic pathway for urea production from diverse nitrogenous species (such as NO3, NH3, and N2) and diluted CO2 using visible light. We designed a palladium (Pd)-doped Schottky heterojunction, composed of graphene and titanium dioxide, as an effective photocatalyst to achieve on-farm urea generation. With the injection of visible-light-generated hot electrons from graphene to TiO2, the as-integrated Pd(I) centers with a special oxidation state of +1.36 in the TiO2 lattice can initiate the universal reaction path of cascade reduction of NO3/N2 to NH3 and resulting C–N coupling of CO2 with as-formed or added NH3 to transform diverse nitrogenous species and CO2 into urea. The urea yield over the at.-Pd@TiO2/Gr photocatalyst is 1.62 mmol g−1 h−1 under visible-light irradiation with an apparent quantum yield of 1.05% at 400 nm and 0.39% even at 700 nm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CCS Chemistry
CCS Chemistry Chemistry-General Chemistry
CiteScore
13.60
自引率
13.40%
发文量
475
审稿时长
10 weeks
期刊介绍: CCS Chemistry, the flagship publication of the Chinese Chemical Society, stands as a leading international chemistry journal based in China. With a commitment to global outreach in both contributions and readership, the journal operates on a fully Open Access model, eliminating subscription fees for contributing authors. Issued monthly, all articles are published online promptly upon reaching final publishable form. Additionally, authors have the option to expedite the posting process through Immediate Online Accepted Article posting, making a PDF of their accepted article available online upon journal acceptance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信