{"title":"The odor of a nontoxic tetrodotoxin analog, 5,6,11-trideoxytetrodotoxin, is detected by specific olfactory sensory neurons of the green spotted puffers.","authors":"Takehisa Suzuki, Ryota Nakahigashi, Masaatsu Adachi, Toshio Nishikawa, Hideki Abe","doi":"10.1093/chemse/bjae021","DOIUrl":"10.1093/chemse/bjae021","url":null,"abstract":"<p><p>Toxic puffers accumulate tetrodotoxin (TTX), a well-known neurotoxin, by feeding on TTX-bearing organisms and using it to defend themselves from predators. Our previous studies have demonstrated that toxic puffers are attracted to 5,6,11-trideoxytetrodotoxin (TDT), a nontoxic TTX analog that is simultaneously accumulated with TTX in toxic puffers and their prey. In addition, activity labeling using immunohistochemistry targeting neuronal activity marker suggests that TDT activates crypt olfactory sensory neurons (OSN) of the green spotted puffer. However, it remains to be determined whether individual crypt OSNs can physiologically respond to TDT. By employing electroporation to express GCaMP6s in OSNs, we successfully identified a distinct group of oval OSNs that exhibited a specific calcium response when exposed to TDT in green spotted puffers. These oval OSNs showed no response to amino acids (AAs), which serve as food odor cues for teleosts. Furthermore, oval morphology and surface positioning of TDT-sensitive OSNs in the olfactory epithelium closely resemble that of crypt OSNs. These findings further substantiate that TDT is specifically detected by crypt OSNs in green spotted puffer. The TDT odor may act as a chemoattractant for finding conspecific toxic puffers and for feeding TTX-bearing organisms for effective toxification.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11258809/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141070159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical SensesPub Date : 2024-01-01DOI: 10.1093/chemse/bjae038
Anupa Ekanayake, Senal Peiris, Sangam Kanekar, Michael Tobia, Qing Yang, Biyar Ahmed, Silas McCaslin, Deepak Kalra, Paul Eslinger, Prasanna Karunanayaka
{"title":"Monorhinal and birhinal odor processing in humans: an fMRI investigation.","authors":"Anupa Ekanayake, Senal Peiris, Sangam Kanekar, Michael Tobia, Qing Yang, Biyar Ahmed, Silas McCaslin, Deepak Kalra, Paul Eslinger, Prasanna Karunanayaka","doi":"10.1093/chemse/bjae038","DOIUrl":"10.1093/chemse/bjae038","url":null,"abstract":"<p><p>The olfactory nerve, also known as cranial nerve I, is known to have exclusive ipsilateral projections to primary olfactory cortical structures. However, the lateralization of olfactory processes is known to depend on the task and nature of stimuli. It still remains unclear whether olfactory system projections in humans also correspond to functional pathways during olfactory tasks without any trigeminal, perceptual, or cognitive-motor components. Twenty young healthy subjects with a normal sense of smell took part in an olfactory functional magnetic resonance imaging (fMRI) study. We used 2 types of nostril-specific stimulation, passive (no sniffing), and active (with sniffing), with phenyl ethyl alcohol, a pure olfactory stimulant, to investigate fMRI activity patterns in primary and secondary olfactory-related brain structures. Irrespective of the stimulated nostril and the type of stimulation, we detected symmetrical activity in primary and secondary olfactory-related brain structures such as the primary olfactory cortex, entorhinal cortex, and orbitofrontal cortex. In the absence of perceptual or cognitive-motor task demands, the perception of monorhinally presented pure odors is processed bilaterally in the brain.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582365/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical SensesPub Date : 2024-01-01DOI: 10.1093/chemse/bjae032
Eva Tolomeo, Carla Masala, Antonio Aversa, Giancarlo Ottaviano, Flavia Gasperi, Leonardo Menghi, Valentina Parma, Marco Tullio Liuzza
{"title":"Psychometric validity of the sum score of the Sniffin' Sticks-Extended Test.","authors":"Eva Tolomeo, Carla Masala, Antonio Aversa, Giancarlo Ottaviano, Flavia Gasperi, Leonardo Menghi, Valentina Parma, Marco Tullio Liuzza","doi":"10.1093/chemse/bjae032","DOIUrl":"10.1093/chemse/bjae032","url":null,"abstract":"<p><p>A common tool to measure olfactory function is the Sniffin' Sticks Test extended version (SSET). The SSET evaluates olfactory ability by summing the scores of three subtests: Threshold, Discrimination, and Identification. Recent meta-scientific literature revealed that many psychometric instruments currently in use have not been adequately validated, leading to a measurement crisis that raises concerns about the validity of the conclusions drawn with these instruments. Two examples of the measurement crisis are (i) the use of sum scores without testing their assumptions (e.g. unidimensionality and tau-equivalence), which indicate that all subtests have the same, stable relationship with their underlying construct, and (ii) the lack of assessment of measurement invariance across groups. Here, we aim to investigate the unidimensionality and tau-equivalence assumptions, internal consistency, and measurement invariance of sex and age groups of the SSET. We tested 988 (555 females, mean ± SD: 39.75 ± 18.60 years) participants with the Italian version of the SSET. The tau-equivalent model demonstrated excellent fit indices (CFI robust = 1, TLI robust = 1, RMSEA robust = 0, SRMR = 0.013), which best explain the data, indicating that all subtests are equally important in measuring olfactory function, but not necessarily equally precise. The results also revealed full measurement invariance across age groups and configural, partial metric, and scalar invariance across sexes, indicating that the use of latent means to compare sex groups should be chosen over raw scores. However, the SSET demonstrated moderate internal consistency. Future studies should clarify whether the reliability of the SSET can be increased.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142104738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical SensesPub Date : 2024-01-01DOI: 10.1093/chemse/bjae035
Cinzia Cecchetto, Arnaud Leleu, Roberta P Calce, Sally Arnhardt, Valentina Parma, Jasper H B de Groot, Jessica Freiherr, Claudio Gentili, Laiquan Zou, Evelina Thunell, Florian Ph S Fischmeister, Diane Rekow, Elisa Dal Bò
{"title":"Consistent social odor representation across 7 languages: the Social Odor Scale translation and validation.","authors":"Cinzia Cecchetto, Arnaud Leleu, Roberta P Calce, Sally Arnhardt, Valentina Parma, Jasper H B de Groot, Jessica Freiherr, Claudio Gentili, Laiquan Zou, Evelina Thunell, Florian Ph S Fischmeister, Diane Rekow, Elisa Dal Bò","doi":"10.1093/chemse/bjae035","DOIUrl":"10.1093/chemse/bjae035","url":null,"abstract":"<p><p>The Social Odor Scale (SOS) is a 12-item questionnaire initially developed and validated in Italian and German to investigate self-reported awareness of social odors, which are odors emanating from the human body that convey diverse information and evoke various emotional responses. The scale includes a total score and 3 subscales representing social odors in the respective categories: romantic partner, familiar, and strangers. Here, we aimed to (i) replicate the validation of the Italian and German versions of the SOS, (ii) translate and validate the SOS into multiple additional languages (French, English, Dutch, Swedish, Chinese), and (iii) explore whether the factor structure of each translated version aligns with the original versions. Confirmatory Factor Analysis (CFA) supported the scale's structure, yielding a good fit across all languages. Notable differences in SOS mean scores were observed among the different languages: Swedish participants exhibited lower social odor awareness compared to the other groups, whereas Chinese participants reported higher social odor awareness compared to Dutch and Swedish participants. Furthermore, SOS scores correlated with respondents' geographical location, with higher (i.e. northern) latitudes linked to lower social odor awareness. These results corroborate the SOS as a valid and reliable instrument, especially for the SOS total score and the Familiar and Partner factors, emphasizing the influence of individual and geographic factors on social odor awareness.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical SensesPub Date : 2024-01-01DOI: 10.1093/chemse/bjae014
{"title":"Correction to: Oral thermal processing in the gustatory cortex of awake mice.","authors":"","doi":"10.1093/chemse/bjae014","DOIUrl":"https://doi.org/10.1093/chemse/bjae014","url":null,"abstract":"","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":"49 ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11000296/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140847149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical SensesPub Date : 2024-01-01DOI: 10.1093/chemse/bjad052
Sasi Tansaraviput, Alissa A Nolden
{"title":"Sucrose, NaCl, and citric acid suppress the metallic sensation of FeSO4.","authors":"Sasi Tansaraviput, Alissa A Nolden","doi":"10.1093/chemse/bjad052","DOIUrl":"10.1093/chemse/bjad052","url":null,"abstract":"<p><p>Metallic sensation is often described as unpleasant and can reduce acceptance of foods and beverages and compliance with medication. Masking and suppressing aversive sensations can help to improve acceptance of these products, with many successful strategies identified for bitterness. However, there are few studies investigating effective strategies for suppressing metallic sensation. This study aims to assess the effectiveness of mixture suppression to reduce the metallic sensation elicited from ferrous sulfate and examine whether individual differences in metallic sensation are associated with the effectiveness of suppression strategies. To achieve this, participants (n = 121) reported the intensity of suprathreshold concentrations of ferrous sulfate alone and in binary mixtures with three tastants, specifically, sucrose, citric acid, and sodium chloride. The results revealed that metallic sensation ratings were significantly lower for every binary mixture tested compared to ferrous sulfate presented in isolation. For 0.3 mM ferrous sulfate, sucrose was identified to be the most effective compound in suppressing metallic sensation, followed by citric acid and sodium chloride. For the 1.0 mM ferrous sulfate solutions, all tastants were equally effective at suppressing metallic sensation. In addition, there is a significant interaction between the perceived metallic intensity and the effectiveness of each strategy. These findings suggest that sucrose, citric acid, and sodium chloride have the potential to be effective in suppressing metallic sensation.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10808002/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139037382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical SensesPub Date : 2024-01-01DOI: 10.1093/chemse/bjae001
Verenice Ascencio Gutierrez, Laura E Martin, Aracely Simental-Ramos, Kimberly F James, Kathryn F Medler, Lindsey A Schier, Ann-Marie Torregrossa
{"title":"TRPM4 and PLCβ3 contribute to normal behavioral responses to an array of sweeteners and carbohydrates but PLCβ3 is not needed for taste-driven licking for glucose.","authors":"Verenice Ascencio Gutierrez, Laura E Martin, Aracely Simental-Ramos, Kimberly F James, Kathryn F Medler, Lindsey A Schier, Ann-Marie Torregrossa","doi":"10.1093/chemse/bjae001","DOIUrl":"10.1093/chemse/bjae001","url":null,"abstract":"<p><p>The peripheral taste system is more complex than previously thought. The novel taste-signaling proteins TRPM4 and PLCβ3 appear to function in normal taste responding as part of Type II taste cell signaling or as part of a broadly responsive (BR) taste cell that can respond to some or all classes of tastants. This work begins to disentangle the roles of intracellular components found in Type II taste cells (TRPM5, TRPM4, and IP3R3) or the BR taste cells (PLCβ3 and TRPM4) in driving behavioral responses to various saccharides and other sweeteners in brief-access taste tests. We found that TRPM4, TRPM5, TRPM4/5, and IP3R3 knockout (KO) mice show blunted or abolished responding to all stimuli compared with wild-type. IP3R3 KO mice did, however, lick more for glucose than fructose following extensive experience with the 2 sugars. PLCβ3 KO mice were largely unresponsive to all stimuli except they showed normal concentration-dependent responding to glucose. The results show that key intracellular signaling proteins associated with Type II and BR taste cells are mutually required for taste-driven responses to a wide range of sweet and carbohydrate stimuli, except glucose. This confirms and extends a previous finding demonstrating that Type II and BR cells are both necessary for taste-driven licking to sucrose. Glucose appears to engage unique intracellular taste-signaling mechanisms, which remain to be fully elucidated.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10825839/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139110758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical SensesPub Date : 2024-01-01DOI: 10.1093/chemse/bjae013
Sebastiano Ricci, Min Sung Kim, Christopher T Simons
{"title":"The impact of temperature and a chemesthetic cooling agent on lingual roughness sensitivity.","authors":"Sebastiano Ricci, Min Sung Kim, Christopher T Simons","doi":"10.1093/chemse/bjae013","DOIUrl":"10.1093/chemse/bjae013","url":null,"abstract":"<p><p>Oral tactile sensitivity underpins food texture perception, but few studies have investigated mechanoreception in oral tissues. During food consumption, oral tissues are exposed to a wide range of temperatures and chemical entities. The objective of the present study was to assess the influence of thermal sensations on lingual roughness sensitivity. Just-noticeable difference thresholds (JNDs) were determined using the staircase method for surface roughness from stainless steel coupons (Ra; 0.177-0.465 µm). Thresholds were assessed when cooling or heating the metal stimuli (n = 32 subjects). Compared to the JND threshold obtained at an ambient stimulus temperature (21 °C: 0.055 ± 0.010 μm), a cold (8 °C) temperature significantly (P = 0.019) reduced tongue sensitivity (i.e. increased JND) to surface roughness (0.109 ± 0.016 μm, respectively) whereas warm and hot temperatures had no significant effect (35 °C: 0.084 ± 0.012 μm; 45 °C: 0.081 ± 0.011 μm). To assess whether the effect of cooling on roughness thresholds is TRPM8-dependent, we collected roughness thresholds in a second cohort of subjects (n = 27) following the lingual application of the cooling compound Evercool 190 (24.3 µM). Interestingly, when Evercool 190 was used to elicit the cold sensation, lingual roughness JNDs were unaffected compared to the control application of water (EC: 0.112 ± 0.016 μm; water: 0.102 ± 0.017 μm; P = 0.604). That lingual roughness sensitivity is decreased by cold temperature, but not chemicals evoking cold sensations, suggests the mechanism underpinning thermal modulation is not TRPM8 dependent.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140206349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical SensesPub Date : 2024-01-01DOI: 10.1093/chemse/bjae033
Nira Cedres, Jonas K Olofsson
{"title":"Subjective cognitive and olfactory impairments predict different prospective dementia outcomes.","authors":"Nira Cedres, Jonas K Olofsson","doi":"10.1093/chemse/bjae033","DOIUrl":"10.1093/chemse/bjae033","url":null,"abstract":"<p><p>Self-reported measures emerge as potential indicators for early detection of dementia and mortality. We investigated the predictive value of different self-reported measures, including subjective cognitive decline (SCD), subjective olfactory impairment (SOI), subjective taste impairment (STI), and self-reported poor health (SPH), in order to determine the risk of progressing to Alzheimer's disease (AD) dementia, Parkinson's disease (PD) dementia, or any-other-cause dementia. A total of 6,028 cognitively unimpaired individuals from the 8th wave of the English Longitudinal Study of Ageing (ELSA) were included as the baseline sample and 5,297 individuals from the 9th wave were included as 2-year follow-up sample. Self-rated measures were assessed using questions from the ELSA structured interview. Three logistic regression models were fitted to predict different the dementia outcomes. SCD based on memory complaints (OR = 11.145; P < 0.001), and older age (OR = 1.108, P < 0.001) significantly predicted the progression to AD dementia at follow-up. SOI (OR = 7.440; P < 0.001) and older age (OR = 1.065, P = 0.035) significantly predicted the progression to PD dementia at follow-up. Furthermore, SCD based on memory complaints (OR = 4.448; P < 0.001) jointly with complaints in other (non-memory) mental abilities (OR = 6.662; P < 0.001), and older age (OR = 1.147, P < 0.001) significantly predicted the progression to dementia of any other cause. Different types of complaints are specifically associated with different dementia outcomes. Our study demonstrates that self-reported measures are a useful and accessible tool when screening for individuals at risk of dementia in the general population.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446720/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical SensesPub Date : 2024-01-01DOI: 10.1093/chemse/bjae030
Georg Raiser, C Giovanni Galizia, Paul Szyszka
{"title":"Olfactory receptor neurons are sensitive to stimulus onset asynchrony: implications for odor source discrimination.","authors":"Georg Raiser, C Giovanni Galizia, Paul Szyszka","doi":"10.1093/chemse/bjae030","DOIUrl":"10.1093/chemse/bjae030","url":null,"abstract":"<p><p>In insects, olfactory receptor neurons (ORNs) are localized in sensilla. Within a sensillum, different ORN types are typically co-localized and exhibit nonsynaptic reciprocal inhibition through ephaptic coupling. This inhibition is hypothesized to aid odor source discrimination in environments where odor molecules (odorants) are dispersed by wind, resulting in turbulent plumes. Under these conditions, odorants from a single source arrive at the ORNs synchronously, while those from separate sources arrive asynchronously. Ephaptic inhibition is expected to be weaker for asynchronous arriving odorants from separate sources, thereby enhancing their discrimination. Previous studies have focused on ephaptic inhibition of sustained ORN responses to constant odor stimuli. This begs the question of whether ephaptic inhibition also affects transient ORN responses and if this inhibition is modulated by the temporal arrival patterns of different odorants. To address this, we recorded co-localized ORNs in the fruit fly Drosophila melanogaster and exposed them to dynamic odorant mixtures. We found reciprocal inhibition, strongly suggesting the presence of ephaptic coupling. This reciprocal inhibition does indeed modulate transient ORN responses and is sensitive to the relative timing of odor stimuli. Notably, the strength of inhibition decreases as the synchrony and correlation between arriving odorants decrease. These results support the hypothesis that ephaptic inhibition aids odor source discrimination.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11408607/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}