Anupa Ekanayake, Senal Peiris, Sangam Kanekar, Michael Tobia, Qing Yang, Biyar Ahmed, Silas McCaslin, Deepak Kalra, Paul Eslinger, Prasanna Karunanayaka
{"title":"人类的单鼻孔和双鼻孔气味处理:fMRI 研究。","authors":"Anupa Ekanayake, Senal Peiris, Sangam Kanekar, Michael Tobia, Qing Yang, Biyar Ahmed, Silas McCaslin, Deepak Kalra, Paul Eslinger, Prasanna Karunanayaka","doi":"10.1093/chemse/bjae038","DOIUrl":null,"url":null,"abstract":"<p><p>The olfactory nerve, also known as cranial nerve I, is known to have exclusive ipsilateral projections to primary olfactory cortical structures. However, the lateralization of olfactory processes is known to depend on the task and nature of stimuli. It still remains unclear whether olfactory system projections in humans also correspond to functional pathways during olfactory tasks without any trigeminal, perceptual, or cognitive-motor components. Twenty young healthy subjects with a normal sense of smell took part in an olfactory functional magnetic resonance imaging (fMRI) study. We used 2 types of nostril-specific stimulation, passive (no sniffing), and active (with sniffing), with phenyl ethyl alcohol, a pure olfactory stimulant, to investigate fMRI activity patterns in primary and secondary olfactory-related brain structures. Irrespective of the stimulated nostril and the type of stimulation, we detected symmetrical activity in primary and secondary olfactory-related brain structures such as the primary olfactory cortex, entorhinal cortex, and orbitofrontal cortex. In the absence of perceptual or cognitive-motor task demands, the perception of monorhinally presented pure odors is processed bilaterally in the brain.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monorhinal and birhinal odor processing in humans: an fMRI investigation.\",\"authors\":\"Anupa Ekanayake, Senal Peiris, Sangam Kanekar, Michael Tobia, Qing Yang, Biyar Ahmed, Silas McCaslin, Deepak Kalra, Paul Eslinger, Prasanna Karunanayaka\",\"doi\":\"10.1093/chemse/bjae038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The olfactory nerve, also known as cranial nerve I, is known to have exclusive ipsilateral projections to primary olfactory cortical structures. However, the lateralization of olfactory processes is known to depend on the task and nature of stimuli. It still remains unclear whether olfactory system projections in humans also correspond to functional pathways during olfactory tasks without any trigeminal, perceptual, or cognitive-motor components. Twenty young healthy subjects with a normal sense of smell took part in an olfactory functional magnetic resonance imaging (fMRI) study. We used 2 types of nostril-specific stimulation, passive (no sniffing), and active (with sniffing), with phenyl ethyl alcohol, a pure olfactory stimulant, to investigate fMRI activity patterns in primary and secondary olfactory-related brain structures. Irrespective of the stimulated nostril and the type of stimulation, we detected symmetrical activity in primary and secondary olfactory-related brain structures such as the primary olfactory cortex, entorhinal cortex, and orbitofrontal cortex. In the absence of perceptual or cognitive-motor task demands, the perception of monorhinally presented pure odors is processed bilaterally in the brain.</p>\",\"PeriodicalId\":9771,\"journal\":{\"name\":\"Chemical Senses\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Senses\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1093/chemse/bjae038\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Senses","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1093/chemse/bjae038","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Monorhinal and birhinal odor processing in humans: an fMRI investigation.
The olfactory nerve, also known as cranial nerve I, is known to have exclusive ipsilateral projections to primary olfactory cortical structures. However, the lateralization of olfactory processes is known to depend on the task and nature of stimuli. It still remains unclear whether olfactory system projections in humans also correspond to functional pathways during olfactory tasks without any trigeminal, perceptual, or cognitive-motor components. Twenty young healthy subjects with a normal sense of smell took part in an olfactory functional magnetic resonance imaging (fMRI) study. We used 2 types of nostril-specific stimulation, passive (no sniffing), and active (with sniffing), with phenyl ethyl alcohol, a pure olfactory stimulant, to investigate fMRI activity patterns in primary and secondary olfactory-related brain structures. Irrespective of the stimulated nostril and the type of stimulation, we detected symmetrical activity in primary and secondary olfactory-related brain structures such as the primary olfactory cortex, entorhinal cortex, and orbitofrontal cortex. In the absence of perceptual or cognitive-motor task demands, the perception of monorhinally presented pure odors is processed bilaterally in the brain.
期刊介绍:
Chemical Senses publishes original research and review papers on all aspects of chemoreception in both humans and animals. An important part of the journal''s coverage is devoted to techniques and the development and application of new methods for investigating chemoreception and chemosensory structures.