Chemical SensesPub Date : 2023-12-13DOI: 10.1093/chemse/bjad050
Eva Drnovsek, Maria Rommel, Antonie Louise Bierling, Alexander Croy, Ilona Croy, Thomas Hummel
{"title":"An olfactory perceptual fingerprint in people with olfactory dysfunction due to COVID-19","authors":"Eva Drnovsek, Maria Rommel, Antonie Louise Bierling, Alexander Croy, Ilona Croy, Thomas Hummel","doi":"10.1093/chemse/bjad050","DOIUrl":"https://doi.org/10.1093/chemse/bjad050","url":null,"abstract":"The sense of smell is based on sensory detection of the molecule(s), which is then further perceptually interpreted. A possible measure of olfactory perception is an odor independent olfactory perceptual fingerprint (OPF) defined by Snitz et al. We aimed to investigate, whether OPF can distinguish patients with olfactory dysfunction due to COVID-19 from controls and which perceptual descriptors are important for that separation. Our study included 99 healthy controls and 41 patients. They rated ten odors using eight descriptors 'pleasant', 'intense', 'familiar', 'warm', 'cold', 'irritating', ‘edible', and ‘disgusting'. An unsupervised machine learning method, hierarchical cluster analysis, showed that OPF can distinguish patients from controls with accuracy of 83%, sensitivity of 51%, and specificity of 96%. Furthermore, a supervised machine learning method, random forest classifier, showed that OPF can distinguish patients and controls in the testing dataset with accuracy of 86%, sensitivity of 64%, and specificity of 96%. Principal component analysis and random forest classifier showed that familiarity and intensity were the key qualities to explain the variance of the data. In conclusion, people with COVID-related olfactory dysfunction have a fundamentally different olfactory perception.","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":"264 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138692543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical SensesPub Date : 2023-01-01DOI: 10.1093/chemse/bjad041
{"title":"XXXIIIth Annual Meeting of the European Chemoreception Research Organization, ECRO 2023, “Diverse Flavors” Van der Valk Hotel Nijmegen Lent, The Netherlands, 18 - 21 September 2023","authors":"","doi":"10.1093/chemse/bjad041","DOIUrl":"https://doi.org/10.1093/chemse/bjad041","url":null,"abstract":"","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135559747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical SensesPub Date : 2023-01-01DOI: 10.1093/chemse/bjad031
Shashwat Damani, Michael H Penner, Juyun Lim
{"title":"Taste perception of oligosaccharides derived from pullulan.","authors":"Shashwat Damani, Michael H Penner, Juyun Lim","doi":"10.1093/chemse/bjad031","DOIUrl":"10.1093/chemse/bjad031","url":null,"abstract":"<p><p>Recent studies indicate that humans can taste starch hydrolysis products (i.e. maltooligosaccharides; MOS). However, the structural specificity of oligosaccharides that elicit such perception is not known. This study investigated taste perception of pullulan-derived oligosaccharides (PDOS) that are structurally similar to MOS, but differ in that every third glycosidic linkage in PDOS is α-1,6, rather than α-1,4. Three food-grade PDOS stimuli were produced by limited-enzyme hydrolysis of pullulan. The resulting products were stimuli with degree of polymerization (DP) of 3, 6, and 9. Subjects discriminated all 3 stimuli from blanks at a significant level (P < 0.00001) in the absence of lactisole, a sweet taste inhibitor. In the presence of lactisole, the subjects could not detect DP 3 at a significant level (P > 0.05), but were able to detect DP 6 and 9 (P < 0.005), although the degree of detectability dropped significantly (P < 0.05). In a follow-up qualitative study, subjects made the target stimuli and glucose into 2 groups (glucose/DP 3 vs. DP 6/DP 9) and characterized both groups as mostly \"sweet\" with having different sweetness intensity. With lactisole, they described glucose and DP 3 as \"taste like blank\" (lactisole water) and found it challenging to describe DP 6 and 9 stimuli due to their subtle nature. These results suggest that taste perception of PDOS primarily depends on the sweet taste receptor, although they may elicit other sensory attributes; this is strikingly different from the reported taste of MOS. The potential impact of structural configuration on taste perception is further discussed.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":"48 ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10473447/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10522479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Respiratory response to an odor throughout development in rats.","authors":"Julie Boulanger-Bertolus, Emmanuelle Courtiol, Nathalie Buonviso, Anne-Marie Mouly","doi":"10.1093/chemse/bjad006","DOIUrl":"https://doi.org/10.1093/chemse/bjad006","url":null,"abstract":"<p><p>Odor-induced sniffing has proven to be a useful behavioral readout for assessing olfactory performance in adult rats. However, little is known about how the respiratory response changes throughout ontogeny. Thus, this study aimed at characterizing respiratory response to an odor in rats using paradigms suitable to infants, juveniles, and adults. We first analyzed the respiratory response to a neutral, novel odor. Then the value of the odor was changed either through its repeated presentation (odor habituation), or its association with a foot-shock (odor fear). In the habituation task, we found that the first presentation of the novel odor induced a clear sniffing response at all 3 ages, but the peak respiratory frequency was higher in adults than in juveniles and infants. When the odor was presented repeatedly, the sniffing response gradually faded and the younger the animal, the faster the fading of the response. In the fear conditioning task, the odor induced an increase in respiratory rate that persisted until the end of the session in adults and infants, but not in juveniles. In another group for which the odor was explicitly unpaired with the foot-shock, the respiratory response to the odor did not last as long over the session than in the paired condition at all 3 ages. Finally, we observed that shock delivery induced a similar respiratory response at the 3 investigated ages in the paired and unpaired conditions. Collectively, these data show that the respiratory response constitutes a faithful index to assess rat's olfactory abilities throughout ontogeny.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":"48 ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9843477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical SensesPub Date : 2023-01-01DOI: 10.1093/chemse/bjad020
Ha Nguyen, Javier Albayay, Richard Höchenberger, Surabhi Bhutani, Sanne Boesveldt, Niko A Busch, Ilja Croijmans, Keiland W Cooper, Jasper H B de Groot, Michael C Farruggia, Alexander W Fjaeldstad, John E Hayes, Thomas Hummel, Paule V Joseph, Tatiana K Laktionova, Thierry Thomas-Danguin, Maria G Veldhuizen, Vera V Voznessenskaya, Valentina Parma, M Yanina Pepino, Kathrin Ohla
{"title":"Covid-19 affects taste independent of taste-smell confusions: results from a combined chemosensory home test and online survey from a large global cohort.","authors":"Ha Nguyen, Javier Albayay, Richard Höchenberger, Surabhi Bhutani, Sanne Boesveldt, Niko A Busch, Ilja Croijmans, Keiland W Cooper, Jasper H B de Groot, Michael C Farruggia, Alexander W Fjaeldstad, John E Hayes, Thomas Hummel, Paule V Joseph, Tatiana K Laktionova, Thierry Thomas-Danguin, Maria G Veldhuizen, Vera V Voznessenskaya, Valentina Parma, M Yanina Pepino, Kathrin Ohla","doi":"10.1093/chemse/bjad020","DOIUrl":"10.1093/chemse/bjad020","url":null,"abstract":"<p><p>People often confuse smell loss with taste loss, so it is unclear how much gustatory function is reduced in patients self-reporting taste loss. Our pre-registered cross-sectional study design included an online survey in 12 languages with instructions for self-administering chemosensory tests with 10 household items. Between June 2020 and March 2021, 10,953 individuals participated. Of these, 5,225 self-reported a respiratory illness and were grouped based on their reported COVID test results: COVID-positive (COVID+, N = 3,356), COVID-negative (COVID-, N = 602), and COVID unknown for those waiting for a test result (COVID?, N = 1,267). The participants who reported no respiratory illness were grouped by symptoms: sudden smell/taste changes (STC, N = 4,445), other symptoms excluding smell or taste changes (OthS, N = 832), and no symptoms (NoS, N = 416). Taste, smell, and oral irritation intensities and self-assessed abilities were rated on visual analog scales. Compared to the NoS group, COVID+ was associated with a 21% reduction in taste (95% confidence interval (CI): 15-28%), 47% in smell (95% CI: 37-56%), and 17% in oral irritation (95% CI: 10-25%) intensity. There were medium to strong correlations between perceived intensities and self-reported abilities (r = 0.84 for smell, r = 0.68 for taste, and r = 0.37 for oral irritation). Our study demonstrates that COVID-19-positive individuals report taste dysfunction when self-tested with stimuli that have little to none olfactory components. Assessing the smell and taste intensity of household items is a promising, cost-effective screening tool that complements self-reports and may help to disentangle taste loss from smell loss. However, it does not replace standardized validated psychophysical tests.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":"48 ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10396355/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10177931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical SensesPub Date : 2023-01-01DOI: 10.1093/chemse/bjad048
{"title":"Editor-in-Chief's Note-Thank you to Reviewers.","authors":"","doi":"10.1093/chemse/bjad048","DOIUrl":"https://doi.org/10.1093/chemse/bjad048","url":null,"abstract":"","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":"48 ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139037383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical SensesPub Date : 2023-01-01DOI: 10.1093/chemse/bjad037
Zetian Li, Abriat Anne, Thomas Hummel
{"title":"Olfactory training: effects of multisensory integration, attention towards odors and physical activity.","authors":"Zetian Li, Abriat Anne, Thomas Hummel","doi":"10.1093/chemse/bjad037","DOIUrl":"10.1093/chemse/bjad037","url":null,"abstract":"<p><p>Olfactory training (OT) has been shown to be of value in the treatment of olfactory dysfunction. The present study aimed to investigate whether the efficacy of OT could be modulated with multisensory integration, attention towards odors, odor complexity, or physical activity assessed with a questionnaire. One hundred healthy participants were recruited and divided into 4 groups. Except for controls (n = 26, mean age ± SD = 36 ± 15 years) all participants performed OT 4 times a day. In the \"video\" group (n = 26, age 39 ± 19 years) OT was performed while watching specific and congruent video sequences. In the \"counter\" group (n = 24, 38 ± 17 years) participants additionally counted the number of odors 1 day per week, and in the \"training only\" group no additional measures were taken in addition to OT (n = 24, 38 ± 20 years). \"Single-molecule\" odorants or \"complex mixtures\" were distributed randomly for training stimulation. Sniffin' sticks tests (odor identification, odor discrimination, and odor threshold), cognitive tests, and a series of scales were measured at both baseline and after 3 months of OT. The degree of physical activity was recorded with a questionnaire. Olfactory function improved in the video and counter groups after OT, especially for odor threshold and discrimination. Yet, odor complexity and the degree of physical activity had limited effects on olfactory improvement after OT. Both multisensory interaction and attention towards odors plus OT appeared to facilitate improvement of olfactory function in healthy individuals compared with OT alone and controls, which could provide new promising treatments for clinical applications.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10271955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical SensesPub Date : 2023-01-01DOI: 10.1093/chemse/bjad032
Natalie Ben Abu, Yaron Ben Shoshan-Galeczki, Einav Malach, Masha Y Niv
{"title":"The T1R3 subunit of the sweet taste receptor is activated by D2O in transmembrane domain-dependent manner.","authors":"Natalie Ben Abu, Yaron Ben Shoshan-Galeczki, Einav Malach, Masha Y Niv","doi":"10.1093/chemse/bjad032","DOIUrl":"10.1093/chemse/bjad032","url":null,"abstract":"<p><p>Deuterium oxide (D2O) is water in which the heavier and rare isotope deuterium replaces both hydrogens. We have previously shown that D2O has a distinctly sweet taste, mediated by the T1R2/T1R3 sweet taste receptor. Here, we explore the effect of heavy water on T1R2 and T1R3 subunits. We show that D2O activates T1R3-transfected HEK293T cells similarly to T1R2/T1R3-transfected cells. The response to glucose dissolved in D2O is higher than in water. Mutations of phenylalanine at position 7305.40 in the transmembrane domain of T1R3 to alanine, leucine, or tyrosine impair or diminish activation by D2O, suggesting a critical role for T1R3 TMD domain in relaying the heavy water signal.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":"48 ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10221726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical SensesPub Date : 2023-01-01DOI: 10.1093/chemse/bjad016
Nuno Gomes, Bettina M Pause, Monique A M Smeets, Gün R Semin
{"title":"Comparing fear and anxiety chemosignals: Do they modulate facial muscle activity and facilitate identifying facial expressions?","authors":"Nuno Gomes, Bettina M Pause, Monique A M Smeets, Gün R Semin","doi":"10.1093/chemse/bjad016","DOIUrl":"https://doi.org/10.1093/chemse/bjad016","url":null,"abstract":"<p><p>Fear and anxiety are the most frequently studied emotional states in chemosignal research. Despite differences between these two emotional states, findings from research using fear and anxiety body odors (BOs) are often treated as part of a similar phenomenon. In this article, we examine possible similarities and differences between participants exposed to fear and anxiety BOs on 2 dependent variables commonly used in chemosignals' research: (1) the activation of facial muscles in displays of fear expressions (i.e. the medial frontalis and the corrugator supercilii); and (2) the time required to discriminate between negative emotional expressions (fear, anger, and disgust) and neutral ones. Our results show that fear (vs. rest) and anxiety (vs. exercise) BOs activate the medial frontalis, suggesting that both have a similar impact on receivers' facial muscles. However, we could not replicate previous findings regarding the influence of fear BOs in discriminating negative emotional faces from neutral ones. Two additional replication attempts failed to replicate the earlier results, indicating that the results reported in the literature with this specific paradigm should be interpreted cautiously. Suggestions for future research examining possible differences between fear and anxiety BOs are advanced.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":"48 ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9679620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical SensesPub Date : 2023-01-01DOI: 10.1093/chemse/bjad018
Amit Dhurandhar, Hongyang Li, Guillermo A Cecchi, Pablo Meyer
{"title":"Expansive linguistic representations to predict interpretable odor mixture discriminability.","authors":"Amit Dhurandhar, Hongyang Li, Guillermo A Cecchi, Pablo Meyer","doi":"10.1093/chemse/bjad018","DOIUrl":"10.1093/chemse/bjad018","url":null,"abstract":"<p><p>Language is often thought as being poorly adapted to precisely describe or quantify smell and olfactory attributes. In this work, we show that semantic descriptors of odors can be implemented in a model to successfully predict odor mixture discriminability, an olfactory attribute. We achieved this by taking advantage of the structure-to-percept model we previously developed for monomolecular odorants, using chemical descriptors to predict pleasantness, intensity and 19 semantic descriptors such as \"fish,\" \"cold,\" \"burnt,\" \"garlic,\" \"grass,\" and \"sweet\" for odor mixtures, followed by a metric learning to obtain odor mixture discriminability. Through this expansion of the representation of olfactory mixtures, our Semantic model outperforms state of the art methods by taking advantage of the intermediary semantic representations learned from human perception data to enhance and generalize the odor discriminability/similarity predictions. As 10 of the semantic descriptors were selected to predict discriminability/similarity, our approach meets the need of rapidly obtaining interpretable attributes of odor mixtures as illustrated by the difficulty of finding olfactory metamers. More fundamentally, it also shows that language can be used to establish a metric of discriminability in the everyday olfactory space.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":"48 ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9684571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}