Chemical SensesPub Date : 2023-01-01DOI: 10.1093/chemse/bjad047
Jianbo Huang, Jiehua Lin, Rachel Yueng, Shuyi Wu, Leto Solla, Terry Acree
{"title":"Masking effects on iso-valeric acid recognition by sub-threshold odor mixture.","authors":"Jianbo Huang, Jiehua Lin, Rachel Yueng, Shuyi Wu, Leto Solla, Terry Acree","doi":"10.1093/chemse/bjad047","DOIUrl":"10.1093/chemse/bjad047","url":null,"abstract":"<p><p>Masking unpleasant odors with pleasant-smelling odorants has a long history and is utilized in various industries, including perfumery and consumer products. However, the effectiveness of odor masking is idiosyncratic and temporary. In this study, we employed Sniff olfactometry (SO) to investigate the psychophysics of masking using brief 70 ms stimulations with mixtures of the mal-odorant iso-valeric acid (IVA) and different masking agents. IVA is a component of human sweat that can overpower its smell and is often associated with unpleasant descriptors such as \"gym locker,\" \"smelly feet,\" \"dirty clothes,\" and so on. Traditionally, high concentrations of pleasant-smelling odorants are used to mitigate the unpleasantness of IVA in situations involving clothing or environments contaminated with IVA. To examine the masking effects of sub-threshold levels of various masking agents (neohivernal, geraniol, florhydral, decanal, iso-longifolanone, methyl iso-eugenol, and s-limonene) on IVA, we conducted experiments using SO to measure the probability of recognizing IVA after 70 ms stimulations with headspaces containing mixtures of super-threshold concentrations of IVA and sub-threshold concentrations of IVA suppressors. The study involved nine subjects, and on average, a single masking agent was found to decrease IVA recognition probability by 14-72%. Moreover, a sub-threshold odor mixture consisting of 6 masking agents demonstrated a substantial decrease in IVA recognition, with a reduction of 96%.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92152956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical SensesPub Date : 2023-01-01DOI: 10.1093/chemse/bjad029
{"title":"XLV Annual Meeting of the Association for Chemoreception Sciences Program Chair: Marta Yanina Pepino, PhD Bonita Springs, Florida | April 19–22, 2023","authors":"","doi":"10.1093/chemse/bjad029","DOIUrl":"https://doi.org/10.1093/chemse/bjad029","url":null,"abstract":"","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135508176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical SensesPub Date : 2023-01-01DOI: 10.1093/chemse/bjad023
Hiroyuki Ikushima, Jun Suzuki, Tomotaka Hemmi, Ryoukichi Ikeda, Yuta Kobayashi, Nobuo Ohta, Yukio Katori
{"title":"Effects of zinc deficiency on the regeneration of olfactory epithelium in mice.","authors":"Hiroyuki Ikushima, Jun Suzuki, Tomotaka Hemmi, Ryoukichi Ikeda, Yuta Kobayashi, Nobuo Ohta, Yukio Katori","doi":"10.1093/chemse/bjad023","DOIUrl":"https://doi.org/10.1093/chemse/bjad023","url":null,"abstract":"<p><p>The olfactory epithelium can regenerate after damage; however, the regeneration process is affected by various factors, such as viral infections, head trauma, and medications. Zinc is an essential trace element that has important roles in organ development, growth, and maturation. Zinc also helps regulate neurotransmission in the brain; nevertheless, its relationship with olfactory epithelium regeneration remains unclear. Therefore, we used a severe zinc deficiency mouse model to investigate the effects of zinc deficiency on olfactory epithelium regeneration. Male wild-type C57BL/6 mice were divided into zinc-deficient and control diet groups at the age of 4 weeks, and methimazole was administered at the age of 8 weeks to induce severe olfactory epithelium damage. We evaluated the olfactory epithelium before and 7, 14, and 28 days after methimazole administration by histologically analyzing paraffin sections. RNA sequencing was also performed at the age of 8 weeks before methimazole administration to examine changes in gene expression caused by zinc deficiency. In the zinc-deficient group, the regenerated olfactory epithelium thickness was decreased at all time points, and the numbers of Ki-67-positive, GAP43-positive, and olfactory marker protein-positive cells (i.e. proliferating cells, immature olfactory neurons, and mature olfactory neurons, respectively) failed to increase at some time points. Additionally, RNA sequencing revealed several changes in gene expression, such as a decrease in the expression of extracellular matrix-related genes and an increase in that of inflammatory response-related genes, in the zinc-deficient group. Therefore, zinc deficiency delays olfactory epithelium regeneration after damage in mice.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":"48 ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10140578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical SensesPub Date : 2023-01-01DOI: 10.1093/chemse/bjad026
Scott J McGrane, Matthew Gibbs, Carlos Hernangomez de Alvaro, Nicola Dunlop, Marcel Winnig, Boris Klebansky, Daniel Waller
{"title":"Umami taste perception and preferences of the domestic cat (Felis catus), an obligate carnivore.","authors":"Scott J McGrane, Matthew Gibbs, Carlos Hernangomez de Alvaro, Nicola Dunlop, Marcel Winnig, Boris Klebansky, Daniel Waller","doi":"10.1093/chemse/bjad026","DOIUrl":"https://doi.org/10.1093/chemse/bjad026","url":null,"abstract":"<p><p>The domestic cat (Felis catus) is an obligate carnivore, and as such has a meat-based diet. Several studies on the taste perception of cats have been reported, indicating that their sense of taste has evolved based on their carnivorous diet. Here, we propose that umami (mediated by Tas1r1-Tas1r3) is the main appetitive taste modality for the domestic cat by characterizing the umami taste of a range of nucleotides, amino acids, and their mixtures for cats obtained using complementary methods. We show for the first time that cats express Tas1r1 in taste papillae. The cat umami receptor responds to a range of nucleotides as agonists, with the purine nucleotides having the highest activity. Their umami receptor does not respond to any amino acids alone; however, 11 l-amino acids with a range of chemical characteristics act as enhancers in combination with a nucleotide. l-Glutamic acid and l-Aspartic acid are not active as either agonists or enhancers of the cat umami receptor due to changes in key binding residues at positions 170 and 302. Overall, cats have an appetitive behavioral response for nucleotides, l-amino acids, and their mixtures. We postulate that the renowned palatability of tuna for cats may be due, at least in part, to its specific combination of high levels of inosine monophosphate and free l-Histidine that produces a strong synergistic umami taste enhancement. These results demonstrate the critical role that the umami receptor plays in enabling cats to detect key taste compounds present in meat.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":"48 ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468298/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10147246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical SensesPub Date : 2023-01-01DOI: 10.1093/chemse/bjad021
Nancy K Dess, Clinton D Chapman, Paulina M Jacobi
{"title":"Selective pressure on a saccharin intake phenotype and its correlates: a replication study.","authors":"Nancy K Dess, Clinton D Chapman, Paulina M Jacobi","doi":"10.1093/chemse/bjad021","DOIUrl":"https://doi.org/10.1093/chemse/bjad021","url":null,"abstract":"<p><p>The Occidental High- and Low-Saccharin rats (respectively, HiS and LoS lines) were selectively bred for decades to examine mechanisms and correlates of a saccharin intake phenotype. Observed line differences ranged from taste and eating to drug self-administration and defensive behavior, paralleling human research on relationships between gustation, personality, and psychopathology. The original lines were terminated in 2019, and replicate lines (HiS-R and LoS-R) were selectively bred for 5 generations to test for reproducible, rapid selection for the phenotype and its correlates. The line differences chosen for replication included intake of tastants (saccharin, sugars, quinine-adulterated sucrose, sodium chloride, and ethanol) and foods (cheese, peas, Spam, and chocolate) and several noningestive behaviors (deprivation-induced hyperactivity, acoustic startle, and open field behavior). The HiS-R and LoS-R lines diverged on intake of saccharin, disaccharides, quinine-adulterated sucrose, sodium chloride, and complex foods, and open field behavior. Differences from the original lines also were observed. Reasons for and implications of the pattern of replication and lack thereof in 5 generations are discussed.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":"48 ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10176573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical SensesPub Date : 2023-01-01DOI: 10.1093/chemse/bjad011
Constantin A Hintschich, David T Liu, Thomas Hummel
{"title":"The psychophysical assessment of gustatory dysfunction in COVID-19.","authors":"Constantin A Hintschich, David T Liu, Thomas Hummel","doi":"10.1093/chemse/bjad011","DOIUrl":"https://doi.org/10.1093/chemse/bjad011","url":null,"abstract":"","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":"48 ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9893393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical SensesPub Date : 2023-01-01DOI: 10.1093/chemse/bjad025
Steven D Munger
{"title":"What's New at Chemical Senses?","authors":"Steven D Munger","doi":"10.1093/chemse/bjad025","DOIUrl":"10.1093/chemse/bjad025","url":null,"abstract":"","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":"48 ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50157149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vitamin C deficiency in osteogenic disorder Shionogi/Shi Jcl-od/od rats: effects on sour taste preferences, lick rates, chorda tympani nerve responses, and taste transduction elements.","authors":"Toshiaki Yasuo, Fumihiko Nakamura, Takeshi Suwabe, Noritaka Sako","doi":"10.1093/chemse/bjad008","DOIUrl":"https://doi.org/10.1093/chemse/bjad008","url":null,"abstract":"<p><p>Animals use sour taste to avoid spoiled food and to choose foods containing vitamins and minerals. To investigate the response to sour taste substances during vitamin C (ascorbic acid; AA) deficiency, we conducted behavioral, neural, anatomical, and molecular biological experiments with osteogenic disorder Shionogi/Shi Jcl-od/od rats, which lack the ability to synthesize AA. Rats had higher 3 mM citric acid and 10 mM AA preference scores when AA-deficient than when replete. Licking rates for sour taste solutions [AA, citric acid, acetic acid, tartaric acid, and HCl] were significantly increased during AA deficiency relative to pre- and postdeficiency. Chorda tympani nerve recordings were conducted to evaluate organic acid taste responses in the AA-deficient and replete rats. Nerve responses to citric acid, acetic acid, and tartaric acid were significantly diminished in AA-deficient rats relative to replete controls. There was no significant difference in the number of fungiform papillae taste buds per unit area in the AA-deficient rats relative to the replete rats. However, mRNA expression levels of Gnat3 (NM_173139.1), Trpm5 (NM_001191896.1), Tas1r1 (NM_053305.1), Car4 (NM_019174.3), and Gad1 (NM_017007.1) in fungiform papillae taste bud cells from AA-deficient rats were significantly lower than those in replete rats. Our data suggest that AA deficiency decreases avoidance of acids and reduces chorda tympani nerve responses to acids. AA deficiency downregulates some taste-related genes in fungiform papillae taste bud cells. However, the results also reveal that the mRNA expression of some putative sour taste receptors in fungiform papillae taste bud cells is not affected by AA deficiency.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":"48 ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9843888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical SensesPub Date : 2023-01-01DOI: 10.1093/chemse/bjad017
Natalie L Johnson, Daniel W Wesson
{"title":"The development of sniffing.","authors":"Natalie L Johnson, Daniel W Wesson","doi":"10.1093/chemse/bjad017","DOIUrl":"10.1093/chemse/bjad017","url":null,"abstract":"<p><p>Sniffing is a commonly displayed behavior in rodents, yet how this important behavior adjusts throughout development to meet the sensory demands of the animals has remained largely unexplored. In this issue of Chemical Senses, Boulanger-Bertolus et al. investigates the ontogeny of odor-evoked sniffing through a longitudinal study of rats engaged in several olfactory paradigms from infancy to adulthood. The results of this study yield a cohesive picture of sniffing behavior across three developmental stages, while also providing direct comparisons within subjects between these timepoints. As we discuss herein, these results advance the field in relation to existing literature on the development of odor-evoked sniffing behavior in several important ways.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":"48 ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10263111/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10036416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical SensesPub Date : 2023-01-01DOI: 10.1093/chemse/bjad019
{"title":"Expression of concern: Taste loss as a distinct symptom of COVID-19: a systematic review and meta-analysis.","authors":"","doi":"10.1093/chemse/bjad019","DOIUrl":"10.1093/chemse/bjad019","url":null,"abstract":"","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":"48 ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10653023/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10150520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}