Cell Death and Differentiation最新文献

筛选
英文 中文
AKR1B1-dependent fructose metabolism enhances malignancy of cancer cells 依赖 AKR1B1 的果糖代谢会增强癌细胞的恶性程度
IF 12.4 1区 生物学
Cell Death and Differentiation Pub Date : 2024-10-15 DOI: 10.1038/s41418-024-01393-4
Qing Zhao, Bing Han, Lu Wang, Jia Wu, Siliang Wang, Zhenxing Ren, Shouli Wang, Haining Yang, Michele Carbone, Changsheng Dong, Gerry Melino, Wen-Lian Chen, Wei Jia
{"title":"AKR1B1-dependent fructose metabolism enhances malignancy of cancer cells","authors":"Qing Zhao, Bing Han, Lu Wang, Jia Wu, Siliang Wang, Zhenxing Ren, Shouli Wang, Haining Yang, Michele Carbone, Changsheng Dong, Gerry Melino, Wen-Lian Chen, Wei Jia","doi":"10.1038/s41418-024-01393-4","DOIUrl":"https://doi.org/10.1038/s41418-024-01393-4","url":null,"abstract":"<p>Fructose metabolism has emerged as a significant contributor to cancer cell proliferation, yet the underlying mechanisms and sources of fructose for cancer cells remain incompletely understood. In this study, we demonstrate that cancer cells can convert glucose into fructose through a process called the <i>AKR1B1</i>-mediated polyol pathway. Inhibiting the endogenous production of fructose through <i>AKR1B1</i> deletion dramatically suppressed glycolysis, resulting in reduced cancer cell migration, inhibited growth, and the induction of apoptosis and cell cycle arrest. Conversely, the acceleration of endogenous fructose through <i>AKR1B1</i> overexpression has been shown to significantly enhance cancer cell proliferation and migration with increased S cell cycle progression. Our findings highlight the crucial role of endogenous fructose in cancer cell malignancy and support the need for further investigation into <i>AKR1B1</i> as a potential cancer therapeutic target.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"743 1","pages":""},"PeriodicalIF":12.4,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SOX4 facilitates brown fat development and maintenance through EBF2-mediated thermogenic gene program in mice SOX4 通过 EBF2 介导的小鼠产热基因程序促进棕色脂肪的发育和维持
IF 12.4 1区 生物学
Cell Death and Differentiation Pub Date : 2024-10-15 DOI: 10.1038/s41418-024-01397-0
Shuai Wang, Ting He, Ya Luo, Kexin Ren, Huanming Shen, Lingfeng Hou, Yixin Wei, Tong Fu, Wenlong Xie, Peng Wang, Jie Hu, Yu Zhu, Zhengrong Huang, Qiyuan Li, Weihua Li, Huiling Guo, Boan Li
{"title":"SOX4 facilitates brown fat development and maintenance through EBF2-mediated thermogenic gene program in mice","authors":"Shuai Wang, Ting He, Ya Luo, Kexin Ren, Huanming Shen, Lingfeng Hou, Yixin Wei, Tong Fu, Wenlong Xie, Peng Wang, Jie Hu, Yu Zhu, Zhengrong Huang, Qiyuan Li, Weihua Li, Huiling Guo, Boan Li","doi":"10.1038/s41418-024-01397-0","DOIUrl":"https://doi.org/10.1038/s41418-024-01397-0","url":null,"abstract":"<p>Brown adipose tissue (BAT) is critical for non-shivering thermogenesis making it a promising therapeutic strategy to combat obesity and metabolic disease. However, the regulatory mechanisms underlying brown fat formation remain incompletely understood. Here, we found SOX4 is required for BAT development and thermogenic program. Depletion of SOX4 in BAT progenitors (<i>Sox4-MKO</i>) or brown adipocytes (<i>Sox4-BKO</i>) resulted in whitened BAT and hypothermia upon acute cold exposure. The reduced thermogenic capacity of <i>Sox4-MKO</i> mice increases their susceptibility to diet-induced obesity. Conversely, overexpression of SOX4 in BAT enhances thermogenesis counteracting diet-induced obesity. Mechanistically, SOX4 activates the transcription of EBF2, which determines brown fat fate. Moreover, phosphorylation of SOX4 at S235 by PKA facilitates its nuclear translocation and EBF2 transcription. Further, SOX4 cooperates with EBF2 to activate transcriptional programs governing thermogenic gene expression. These results demonstrate that SOX4 serves as an upstream regulator of EBF2, providing valuable insights into BAT development and thermogenic function maintenance.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"11 1","pages":""},"PeriodicalIF":12.4,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of BAK-mediated apoptosis by the BH3-only protein BNIP5 纯 BH3 蛋白 BNIP5 抑制 BAK 介导的细胞凋亡
IF 12.4 1区 生物学
Cell Death and Differentiation Pub Date : 2024-10-15 DOI: 10.1038/s41418-024-01386-3
Sebastian Rühl, Zhenrui Li, Shagun Srivastava, Luigi Mari, Clifford S. Guy, Mao Yang, Tudor Moldoveanu, Douglas R. Green
{"title":"Inhibition of BAK-mediated apoptosis by the BH3-only protein BNIP5","authors":"Sebastian Rühl, Zhenrui Li, Shagun Srivastava, Luigi Mari, Clifford S. Guy, Mao Yang, Tudor Moldoveanu, Douglas R. Green","doi":"10.1038/s41418-024-01386-3","DOIUrl":"https://doi.org/10.1038/s41418-024-01386-3","url":null,"abstract":"<p>BCL-2 family proteins regulate apoptosis by initiating mitochondrial outer membrane permeabilization (MOMP). Activation of the MOMP effectors BAX and BAK is controlled by the interplay of anti-apoptotic BCL-2 proteins (e.g., MCL-1) and pro-apoptotic BH3-only proteins (e.g., BIM). Using a genome-wide CRISPR-dCas9 transactivation screen we identified BNIP5 as an inhibitor of BAK-, but not BAX-induced apoptosis. BNIP5 blocked BAK activation in different cell types and in response to various cytotoxic therapies. The BH3 domain of BNIP5 was both necessary and sufficient to block BAK activation. Mechanistically, the BH3 domain of BNIP5 acts as a selective BAK activator, but a poor de-repressor of complexes between BAK and pro-survival BCL-2 family proteins. By promoting the binding of activated BAK to MCL-1 or BCL-xL, BNIP5 inhibits apoptosis when BAX is absent. Based on our observations, BNIP5 can act functionally as an anti-apoptotic BH3-only protein.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"6 1","pages":""},"PeriodicalIF":12.4,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
127aa encoded by circSpdyA promotes FA synthesis and NK cell repression in breast cancers 由 circSpdyA 编码的 127aa 可促进乳腺癌中的 FA 合成和 NK 细胞抑制作用
IF 12.4 1区 生物学
Cell Death and Differentiation Pub Date : 2024-10-14 DOI: 10.1038/s41418-024-01396-1
Xinya Gao, Zicheng Sun, Xin Liu, Jiayue Luo, Xiaoli Liang, Huijin Wang, Junyi Zhou, Ciqiu Yang, Tiantian Wang, Jie Li
{"title":"127aa encoded by circSpdyA promotes FA synthesis and NK cell repression in breast cancers","authors":"Xinya Gao, Zicheng Sun, Xin Liu, Jiayue Luo, Xiaoli Liang, Huijin Wang, Junyi Zhou, Ciqiu Yang, Tiantian Wang, Jie Li","doi":"10.1038/s41418-024-01396-1","DOIUrl":"https://doi.org/10.1038/s41418-024-01396-1","url":null,"abstract":"<p>Lipid metabolism reprogram plays key roles in breast cancer tumorigenesis and immune escape. The underlying mechanism and potential regulator were barely investigated. We thus established an in vivo tumorigenesis model, mice-bearing breast cancer cells were treated with an ordinary diet and high-fat diet, species were collected and subjected to circRNA sequence to scan the potential circRNAs regulating the lipid metabolism. CircSpdyA was one of the most upregulated circRNAs and had the potential to encode a 127-aa micro peptide (referred to as 127aa). 127 aa promotes tumorigenesis through promoting the fatty acid de novo synthesis by directly binding to FASN. Single-cell sequence indicated 127aa inhibited NK cell infiltration and function. This was achieved by inhibiting the transcription of NK cell activators epigenetically. Moreover, lipid-laden from 127aa positive cancer cells transferred to NK cells inhibited the cytotoxicity. Taken together, circSpdyA encoded 127aa promotes fatty acid de novo synthesis through directly binding with FASN and induced NK cell repression by inhibiting the transcription of NK cell activators.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"229 1","pages":""},"PeriodicalIF":12.4,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SLAMF7 (CD319) on activated CD8+ T cells transduces environmental cues to initiate cytotoxic effector cell responses 活化的 CD8+ T 细胞上的 SLAMF7 (CD319) 通过环境线索启动细胞毒性效应细胞反应
IF 12.4 1区 生物学
Cell Death and Differentiation Pub Date : 2024-10-10 DOI: 10.1038/s41418-024-01399-y
Holger Lingel, Laura Fischer, Sven Remstedt, Benno Kuropka, Lars Philipsen, Irina Han, Jan-Erik Sander, Christian Freund, Aditya Arra, Monika C. Brunner-Weinzierl
{"title":"SLAMF7 (CD319) on activated CD8+ T cells transduces environmental cues to initiate cytotoxic effector cell responses","authors":"Holger Lingel, Laura Fischer, Sven Remstedt, Benno Kuropka, Lars Philipsen, Irina Han, Jan-Erik Sander, Christian Freund, Aditya Arra, Monika C. Brunner-Weinzierl","doi":"10.1038/s41418-024-01399-y","DOIUrl":"https://doi.org/10.1038/s41418-024-01399-y","url":null,"abstract":"<p>CD8<sup>+</sup> T-cell responses are meticulously orchestrated processes regulated by intercellular receptor:ligand interactions. These interactions critically control the dynamics of CD8<sup>+</sup> T-cell populations that is crucial to overcome threats such as viral infections or cancer. Yet, the mechanisms governing these dynamics remain incompletely elucidated. Here, we identified a hitherto unknown T-cell referred function of the self-ligating surface receptor SLAMF7 (CD319) on CD8<sup>+</sup> T cells during initiation of cytotoxic T-cell responses. According to its cytotoxicity related expression on T effector cells, we found that CD8<sup>+</sup> T cells could utilize SLAMF7 to transduce environmental cues into cellular interactions and information exchange. Indeed, SLAMF7 facilitated a dose-dependent formation of stable homotypic contacts that ultimately resulted in stable cell-contacts, quorum populations and commitment to expansion and differentiation. Using pull-down assays and network analyses, we identified novel SLAMF7-binding intracellular signaling molecules including the CRK, CRKL, and Nck adaptors, which are involved in T-cell contact formation and may mediate SLAMF7 functions in sensing and adhesion. Hence, providing SLAMF7 signals during antigen recognition of CD8<sup>+</sup> T cells enhanced their overall magnitude, particularly in responses towards low-affinity antigens, resulting in a significant boost in their proliferation and cytotoxic capacity. Overall, we have identified and characterized a potent initiator of the cytotoxic T lymphocyte response program and revealed advanced mechanisms to improve CD8<sup>+</sup> T-cell response decisions against weak viral or tumor-associated antigens, thereby strengthening our defense against such adversaries.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"227 1","pages":""},"PeriodicalIF":12.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activating the NFE2L1-ubiquitin-proteasome system by DDI2 protects from ferroptosis. DDI2激活NFE2L1-泛素-蛋白酶体系统可防止铁变态反应。
IF 13.7 1区 生物学
Cell Death and Differentiation Pub Date : 2024-10-09 DOI: 10.1038/s41418-024-01398-z
Anahita Ofoghi, Stefan Kotschi, Imke L Lemmer, Daniel T Haas, Nienke Willemsen, Batoul Bayer, Anna S Jung, Sophie Möller, Stefanie Haberecht-Müller, Elke Krüger, Natalie Krahmer, Alexander Bartelt
{"title":"Activating the NFE2L1-ubiquitin-proteasome system by DDI2 protects from ferroptosis.","authors":"Anahita Ofoghi, Stefan Kotschi, Imke L Lemmer, Daniel T Haas, Nienke Willemsen, Batoul Bayer, Anna S Jung, Sophie Möller, Stefanie Haberecht-Müller, Elke Krüger, Natalie Krahmer, Alexander Bartelt","doi":"10.1038/s41418-024-01398-z","DOIUrl":"https://doi.org/10.1038/s41418-024-01398-z","url":null,"abstract":"<p><p>Ferroptosis is an iron-dependent, non-apoptotic form of cell death initiated by oxidative stress and lipid peroxidation. Recent evidence has linked ferroptosis to the action of the transcription factor Nuclear factor erythroid-2 derived,-like-1 (NFE2L1). NFE2L1 regulates proteasome abundance in an adaptive fashion, maintaining protein quality control to secure cellular homeostasis, but the regulation of NFE2L1 during ferroptosis and the role of the ubiquitin-proteasome system (UPS) herein are still unclear. In the present study, using an unbiased proteomic approach charting the specific ubiquitylation sites, we show that induction of ferroptosis leads to recalibration of the UPS. RSL3-induced ferroptosis inhibits proteasome activity and leads to global hyperubiquitylation, which is linked to NFE2L1 activation. As NFE2L1 resides in the endoplasmic reticulum tethered to the membrane, it undergoes complex posttranslational modification steps to become active and induce the expression of proteasome subunit genes. We show that proteolytic cleavage of NFE2L1 by the aspartyl protease DNA-damage inducible 1 homolog 2 (DDI2) is a critical step for the ferroptosis-induced feed-back loop of proteasome function. Cells lacking DDI2 cannot activate NFE2L1 in response to RSL3 and show global hyperubiquitylation. Genetic or chemical induction of ferroptosis in cells with a disrupted DDI2-NFE2L1 pathway diminishes proteasomal activity and promotes cell death. Also, treating cells with the clinical drug nelfinavir, which inhibits DDI2, sensitized cells to ferroptosis. In conclusion, our results provide new insight into the importance of the UPS in ferroptosis and highlight the role of the DDI2-NFE2L1 as a potential therapeutic target. Manipulating DDI2-NFE2L1 activity through chemical inhibition might help sensitizing cells to ferroptosis, thus enhancing existing cancer therapies.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":" ","pages":""},"PeriodicalIF":13.7,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel glucose sensor fuelling cancer growth 助长癌症生长的新型葡萄糖传感器
IF 12.4 1区 生物学
Cell Death and Differentiation Pub Date : 2024-10-08 DOI: 10.1038/s41418-024-01400-8
Luisa Ricci, Simone Cardaci
{"title":"A novel glucose sensor fuelling cancer growth","authors":"Luisa Ricci, Simone Cardaci","doi":"10.1038/s41418-024-01400-8","DOIUrl":"https://doi.org/10.1038/s41418-024-01400-8","url":null,"abstract":"","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"10 1","pages":""},"PeriodicalIF":12.4,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142384293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HKDC1 functions as a glucose sensor and promotes metabolic adaptation and cancer growth via interaction with PHB2 HKDC1 作为葡萄糖传感器发挥作用,通过与 PHB2 相互作用促进新陈代谢适应和癌症生长
IF 12.4 1区 生物学
Cell Death and Differentiation Pub Date : 2024-10-07 DOI: 10.1038/s41418-024-01392-5
Panpan Liu, Yao Luo, Hongyu Wu, Yi Han, Shoujie Wang, Rui Liu, Shijun Wen, Peng Huang
{"title":"HKDC1 functions as a glucose sensor and promotes metabolic adaptation and cancer growth via interaction with PHB2","authors":"Panpan Liu, Yao Luo, Hongyu Wu, Yi Han, Shoujie Wang, Rui Liu, Shijun Wen, Peng Huang","doi":"10.1038/s41418-024-01392-5","DOIUrl":"https://doi.org/10.1038/s41418-024-01392-5","url":null,"abstract":"<p>Glucose sensing and metabolic adaptation to glucose availability in the tumor microenvironment are critical for cancer development. Here we show that HKDC1, a hexokinase highly expressed in cancer associated with poor prognosis, functions as a glucose sensor that alters its stability in response to environmental glucose. The glucose-sensing domain is located between amino acids 751-917, with Ser896 as a key residue that regulates HKDC1 stability by affecting Lys620 ubiquitination. This sensing mechanism enables cellular adaptation to glucose starvation by promoting mitochondrial fatty acid utilization. Furthermore, HKDC1 promotes tumor growth by sequestering prohibitin 2 (PHB2) to disable its suppressive effect on SP1, thus promoting the expression of pro-oncogenic molecules. Abrogation of HKDC1 by genetic knockout or by glucose depletion releases PHB2, leading to suppression of cancer cell proliferation and inhibition of tumor growth. Our study reveals a previously unrecognized role of HKDC1 in glucose sensing and metabolic adaptation, and identifies HKDC1 as a potential therapeutic target.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"12 1","pages":""},"PeriodicalIF":12.4,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142383741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fructose: the sweet(er) side of the Warburg effect 果糖:沃伯格效应的甜蜜一面
IF 13.7 1区 生物学
Cell Death and Differentiation Pub Date : 2024-10-05 DOI: 10.1038/s41418-024-01395-2
Christian Frezza
{"title":"Fructose: the sweet(er) side of the Warburg effect","authors":"Christian Frezza","doi":"10.1038/s41418-024-01395-2","DOIUrl":"10.1038/s41418-024-01395-2","url":null,"abstract":"","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"31 11","pages":"1395-1397"},"PeriodicalIF":13.7,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41418-024-01395-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNA damage-inducible transcript 3 positively regulates RIPK1-mediated necroptosis DNA 损伤诱导转录本 3 对 RIPK1 介导的坏死有正向调节作用
IF 12.4 1区 生物学
Cell Death and Differentiation Pub Date : 2024-10-03 DOI: 10.1038/s41418-024-01385-4
Rui Ni, Ting Cao, Xiaoyun Ji, Angel Peng, Zhuxu Zhang, Guo-Chang Fan, Peter Stathopulos, Subrata Chakrabarti, Zhaoliang Su, Tianqing Peng
{"title":"DNA damage-inducible transcript 3 positively regulates RIPK1-mediated necroptosis","authors":"Rui Ni, Ting Cao, Xiaoyun Ji, Angel Peng, Zhuxu Zhang, Guo-Chang Fan, Peter Stathopulos, Subrata Chakrabarti, Zhaoliang Su, Tianqing Peng","doi":"10.1038/s41418-024-01385-4","DOIUrl":"https://doi.org/10.1038/s41418-024-01385-4","url":null,"abstract":"<p>DNA damage-inducible transcript 3 (DDIT3) is a well-known transcription factor that regulates the expression of apoptosis-related genes for promoting apoptosis during endoplasmic reticulum stress. Here, we report an unrecognized role of DDIT3 in facilitating necroptosis. DDIT3 directly binds and competitively prevents the p38 MAPK-MK2 interaction and thereby blocking MK2 activation while stimulating p38 MAPK activation. This blockage of MK2 activation initially prevents RIPK1 phosphorylation at Ser320 (inactivation), subsequently relieving its suppression of RIPK1 activation. Consequently, p38 MAPK facilitates RIPK1 phosphorylation at Ser166 (activation) through DDIT3 phosphorylation-related mechanisms, leading to necroptosis. Mechanistically, a 10-amino acid segment (Glu19-Val28) within DDIT3’s N-terminus is identified to account for its pro-necroptotic function. In vivo studies demonstrate that forced expression of DDIT3 induces necroptosis, whereas deletion of DDIT3 alleviates necroptosis in mouse hearts under stress. These findings shed light on a novel regulatory mechanism by which DDIT3 promotes RIPK1 activation and subsequent necroptosis.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"221 1","pages":""},"PeriodicalIF":12.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142368830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信