Xinyan Lu, Dongshi Chen, Min Wang, Xiangping Song, Kaylee Ermine, Suisui Hao, Anupma Jha, Yixian Huang, Ying Kang, Haibo Qiu, Heinz-Josef Lenz, Song Li, Zhendong Jin, Jian Yu, Lin Zhang
{"title":"OSW-1耗尽氧甾醇结合蛋白可触发RIP1/ rip3非依赖性坏死坏死和对癌症免疫治疗的致敏","authors":"Xinyan Lu, Dongshi Chen, Min Wang, Xiangping Song, Kaylee Ermine, Suisui Hao, Anupma Jha, Yixian Huang, Ying Kang, Haibo Qiu, Heinz-Josef Lenz, Song Li, Zhendong Jin, Jian Yu, Lin Zhang","doi":"10.1038/s41418-025-01521-8","DOIUrl":null,"url":null,"abstract":"<p>Oxysterol-binding proteins (OSBPs), lipid transfer proteins functioning at intracellular membrane contact sites, are recently found to be dysregulated in cancer and promote cancer cell survival. However, their role as potential targets in cancer therapy remains largely unexplored. In this study, we found OSW-1, a natural compound and OSBP inhibitor, potently and selectively kills colon cancer cells by activating a previously unknown necroptosis pathway that is independent of receptor-interacting protein 1 (RIP1) and RIP3. OSW-1 stabilizes p53 and degrades OSBPs to promote endoplasmic reticulum (ER) stress and glycogen synthase kinase 3β (GSK3β)/Tip60-mediated p53 acetylation at Lysine 120, which selectively induces its target PUMA. PUMA-mediated mitochondrial calcium influx activates calcium/calmodulin-dependent protein kinase IIδ (CamKIIδ) to promote mixed lineage kinase domain-like (MLKL) phosphorylation and necroptotic cell death. Furthermore, OSW-1-induced necroptosis is highly immunogenic and sensitizes syngeneic colorectal tumors to anti-PD-1 immunotherapy. Together, our results identified a novel RIP1/RIP3-independent necroptosis pathway underlying the extremely potent anticancer activity of OSW-1, which can be harnessed to develop new anticancer therapies by selectively stimulating antitumor immunity.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"9 1","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Depletion of oxysterol-binding proteins by OSW-1 triggers RIP1/RIP3-independent necroptosis and sensitization to cancer immunotherapy\",\"authors\":\"Xinyan Lu, Dongshi Chen, Min Wang, Xiangping Song, Kaylee Ermine, Suisui Hao, Anupma Jha, Yixian Huang, Ying Kang, Haibo Qiu, Heinz-Josef Lenz, Song Li, Zhendong Jin, Jian Yu, Lin Zhang\",\"doi\":\"10.1038/s41418-025-01521-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Oxysterol-binding proteins (OSBPs), lipid transfer proteins functioning at intracellular membrane contact sites, are recently found to be dysregulated in cancer and promote cancer cell survival. However, their role as potential targets in cancer therapy remains largely unexplored. In this study, we found OSW-1, a natural compound and OSBP inhibitor, potently and selectively kills colon cancer cells by activating a previously unknown necroptosis pathway that is independent of receptor-interacting protein 1 (RIP1) and RIP3. OSW-1 stabilizes p53 and degrades OSBPs to promote endoplasmic reticulum (ER) stress and glycogen synthase kinase 3β (GSK3β)/Tip60-mediated p53 acetylation at Lysine 120, which selectively induces its target PUMA. PUMA-mediated mitochondrial calcium influx activates calcium/calmodulin-dependent protein kinase IIδ (CamKIIδ) to promote mixed lineage kinase domain-like (MLKL) phosphorylation and necroptotic cell death. Furthermore, OSW-1-induced necroptosis is highly immunogenic and sensitizes syngeneic colorectal tumors to anti-PD-1 immunotherapy. Together, our results identified a novel RIP1/RIP3-independent necroptosis pathway underlying the extremely potent anticancer activity of OSW-1, which can be harnessed to develop new anticancer therapies by selectively stimulating antitumor immunity.</p>\",\"PeriodicalId\":9731,\"journal\":{\"name\":\"Cell Death and Differentiation\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":13.7000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death and Differentiation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41418-025-01521-8\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death and Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41418-025-01521-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Depletion of oxysterol-binding proteins by OSW-1 triggers RIP1/RIP3-independent necroptosis and sensitization to cancer immunotherapy
Oxysterol-binding proteins (OSBPs), lipid transfer proteins functioning at intracellular membrane contact sites, are recently found to be dysregulated in cancer and promote cancer cell survival. However, their role as potential targets in cancer therapy remains largely unexplored. In this study, we found OSW-1, a natural compound and OSBP inhibitor, potently and selectively kills colon cancer cells by activating a previously unknown necroptosis pathway that is independent of receptor-interacting protein 1 (RIP1) and RIP3. OSW-1 stabilizes p53 and degrades OSBPs to promote endoplasmic reticulum (ER) stress and glycogen synthase kinase 3β (GSK3β)/Tip60-mediated p53 acetylation at Lysine 120, which selectively induces its target PUMA. PUMA-mediated mitochondrial calcium influx activates calcium/calmodulin-dependent protein kinase IIδ (CamKIIδ) to promote mixed lineage kinase domain-like (MLKL) phosphorylation and necroptotic cell death. Furthermore, OSW-1-induced necroptosis is highly immunogenic and sensitizes syngeneic colorectal tumors to anti-PD-1 immunotherapy. Together, our results identified a novel RIP1/RIP3-independent necroptosis pathway underlying the extremely potent anticancer activity of OSW-1, which can be harnessed to develop new anticancer therapies by selectively stimulating antitumor immunity.
期刊介绍:
Mission, vision and values of Cell Death & Differentiation:
To devote itself to scientific excellence in the field of cell biology, molecular biology, and biochemistry of cell death and disease.
To provide a unified forum for scientists and clinical researchers
It is committed to the rapid publication of high quality original papers relating to these subjects, together with topical, usually solicited, reviews, meeting reports, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.