Cell Death and Differentiation最新文献

筛选
英文 中文
Tufm lactylation regulates neuronal apoptosis by modulating mitophagy in traumatic brain injury. Tufm 乳酰化通过调节创伤性脑损伤中的有丝分裂来调节神经细胞凋亡。
IF 13.7 1区 生物学
Cell Death and Differentiation Pub Date : 2024-11-05 DOI: 10.1038/s41418-024-01408-0
Weiji Weng, Zhenghui He, Zixuan Ma, Jialin Huang, Yuhan Han, Qiyuan Feng, Wenlan Qi, Yidong Peng, Jiangchang Wang, Jiacheng Gu, Wenye Wang, Yong Lin, Gan Jiang, Jiyao Jiang, Junfeng Feng
{"title":"Tufm lactylation regulates neuronal apoptosis by modulating mitophagy in traumatic brain injury.","authors":"Weiji Weng, Zhenghui He, Zixuan Ma, Jialin Huang, Yuhan Han, Qiyuan Feng, Wenlan Qi, Yidong Peng, Jiangchang Wang, Jiacheng Gu, Wenye Wang, Yong Lin, Gan Jiang, Jiyao Jiang, Junfeng Feng","doi":"10.1038/s41418-024-01408-0","DOIUrl":"10.1038/s41418-024-01408-0","url":null,"abstract":"<p><p>Lactates accumulation following traumatic brain injury (TBI) is detrimental. However, whether lactylation is triggered and involved in the deterioration of TBI remains unknown. Here, we first report that Tufm lactylation pathway induces neuronal apoptosis in TBI. Lactylation is found significantly increased in brain tissues from patients with TBI and mice with controlled cortical impact (CCI), and in neuronal injury cell models. Tufm, a key factor in mitophagy, is screened and identified to be mostly lactylated. Tufm is detected to be lactylated at K286 and the lactylation inhibits the interaction of Tufm and Tomm40 on mitochondria. The mitochondrial distribution of Tufm is then inhibited. Consequently, Tufm-mediated mitophagy is suppressed while mitochondria-induced neuronal apoptosis is increased. In contrast, the knockin of a lactylation-deficient Tufm<sup>K286R</sup> mutant in mice rescues the mitochondrial distribution of Tufm and Tufm-mediated mitophagy, and improves functional outcome after CCI. Likewise, mild hypothermia, as a critical therapeutic method in neuroprotection, helps in downregulating Tufm lactylation, increasing Tufm-mediated mitophagy, mitigating neuronal apoptosis, and eventually ameliorating the outcome of TBI. A novel molecular mechanism in neuronal apoptosis, TBI-initiated Tufm lactylation suppressing mitophagy, is thus revealed.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":" ","pages":""},"PeriodicalIF":13.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The AKR1C1-CYP1B1-cAMP signaling axis controls tumorigenicity and ferroptosis susceptibility of extrahepatic cholangiocarcinoma. AKR1C1-CYP1B1-cAMP信号轴控制着肝外胆管癌的致瘤性和易感性。
IF 13.7 1区 生物学
Cell Death and Differentiation Pub Date : 2024-10-30 DOI: 10.1038/s41418-024-01407-1
Chang Liu, Cheng Zhang, Hongkun Wu, Zhibin Zhao, Zhenhua Wang, Xiaomin Zhang, Jieli Yang, Wenlong Yu, Zhexiong Lian, Minghui Gao, Lin Zhou
{"title":"The AKR1C1-CYP1B1-cAMP signaling axis controls tumorigenicity and ferroptosis susceptibility of extrahepatic cholangiocarcinoma.","authors":"Chang Liu, Cheng Zhang, Hongkun Wu, Zhibin Zhao, Zhenhua Wang, Xiaomin Zhang, Jieli Yang, Wenlong Yu, Zhexiong Lian, Minghui Gao, Lin Zhou","doi":"10.1038/s41418-024-01407-1","DOIUrl":"https://doi.org/10.1038/s41418-024-01407-1","url":null,"abstract":"<p><p>Extrahepatic cholangiocarcinoma (ECC), a highly malignant type of cancer with increasing incidence, has a poor prognosis due to limited treatment options. Based on genomic analysis of ECC patient samples, here we report that aldo-keto reductase family 1 member C1 (AKR1C1) is highly expressed in human ECC tissues and closely associated with ECC progression and poor prognosis. Intriguingly, we show that inducible AKR1C1 knockdown triggers ECC cells to undergo ferroptosis. Mechanistically, AKR1C1 degrades the protein stability of the cytochrome P450 family member CYP1B1, a newly discovered mediator of ferroptosis, via ubiquitin-proteasomal degradation. Additionally, AKR1C1 decreases CYP1B1 mRNA level through the transcriptional factor aryl-hydrocarbon receptor (AHR). Furthermore, the AKR1C1-CYP1B1 axis modulates ferroptosis in ECC cells via the cAMP-PKA signaling pathway. Finally, in a xenograft mouse model of ECC, AKR1C1 depletion sensitizes cancer cells to ferroptosis and synergizes with ferroptosis inducers to suppress tumor growth. Therefore, the AKR1C1-CYP1B1-cAMP signaling axis is a promising therapeutic target for ECC treatment, especially in combination with ferroptosis inducers.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":" ","pages":""},"PeriodicalIF":13.7,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
METTL3 confers oxaliplatin resistance through the activation of G6PD-enhanced pentose phosphate pathway in hepatocellular carcinoma METTL3 通过激活肝细胞癌中 G6PD 增强的磷酸戊糖通路赋予奥沙利铂耐药性
IF 12.4 1区 生物学
Cell Death and Differentiation Pub Date : 2024-10-29 DOI: 10.1038/s41418-024-01406-2
Xiaohan Jin, Yongrui Lv, Fengjie Bie, Jinling Duan, Chao Ma, Miaomiao Dai, Jiewei Chen, Lianghe Lu, Shuidan Xu, Jie Zhou, Si Li, Jiong Bi, Fengwei Wang, Dan Xie, Muyan Cai
{"title":"METTL3 confers oxaliplatin resistance through the activation of G6PD-enhanced pentose phosphate pathway in hepatocellular carcinoma","authors":"Xiaohan Jin, Yongrui Lv, Fengjie Bie, Jinling Duan, Chao Ma, Miaomiao Dai, Jiewei Chen, Lianghe Lu, Shuidan Xu, Jie Zhou, Si Li, Jiong Bi, Fengwei Wang, Dan Xie, Muyan Cai","doi":"10.1038/s41418-024-01406-2","DOIUrl":"https://doi.org/10.1038/s41418-024-01406-2","url":null,"abstract":"<p>Oxaliplatin-based therapeutics is a widely used treatment approach for hepatocellular carcinoma (HCC) patients; however, drug resistance poses a significant clinical challenge. Epigenetic modifications have been implicated in the development of drug resistance. In our study, employing siRNA library screening, we identified that silencing the m<sup>6</sup>A writer METTL3 significantly enhanced the sensitivity to oxaliplatin in both in vivo and in vitro HCC models. Further investigations through combined RNA-seq and non-targeted metabolomics analysis revealed that silencing METTL3 impeded the pentose phosphate pathway (PPP), leading to a reduction in NADPH and nucleotide precursors. This disruption induced DNA damage, decreased DNA synthesis, and ultimately resulted in cell cycle arrest. Mechanistically, METTL3 was found to modify E3 ligase TRIM21 near the 3’UTR with N<sup>6</sup>-methyladenosine, leading to reduced RNA stability upon recognition by YTHDF2. TRIM21, in turn, facilitated the degradation of the rate-limiting enzyme of PPP, G6PD, through the ubiquitination-proteasome pathway. Importantly, high expression of METTL3 was significantly associated with adverse prognosis and oxaliplatin resistance in HCC patients. Notably, treatment with the specific METTL3 inhibitor, STM2457, significantly improved the efficacy of oxaliplatin. These findings underscore the critical role of the METTL3/TRIM21/G6PD axis in driving oxaliplatin resistance and present a promising strategy to overcome chemoresistance in HCC.</p><figure></figure>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"23 1","pages":""},"PeriodicalIF":12.4,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Apoptosis signaling is activated as a transient pulse in neurons 凋亡信号在神经元中作为瞬时脉冲被激活
IF 12.4 1区 生物学
Cell Death and Differentiation Pub Date : 2024-10-26 DOI: 10.1038/s41418-024-01403-5
Keeley L. Spiess, Matthew J. Geden, Selena E. Romero, Emilie Hollville, Elizabeth S. Hammond, Rachel L. Patterson, Quintin B. Girardi, Mohanish Deshmukh
{"title":"Apoptosis signaling is activated as a transient pulse in neurons","authors":"Keeley L. Spiess, Matthew J. Geden, Selena E. Romero, Emilie Hollville, Elizabeth S. Hammond, Rachel L. Patterson, Quintin B. Girardi, Mohanish Deshmukh","doi":"10.1038/s41418-024-01403-5","DOIUrl":"https://doi.org/10.1038/s41418-024-01403-5","url":null,"abstract":"<p>Apoptosis is a fundamental process of all mammalian cells but exactly how it is regulated in different primary cells remains less explored. In most contexts, apoptosis is engaged to eliminate cells. However, postmitotic cells such as neurons must efficiently balance the need for developmental apoptosis <i>versus</i> the physiological needs for their long-term survival. Neurons are capable of reversing the commitment to death even after the point of cytochrome <i>c</i> release. This ability of neurons to recover from an apoptotic signal suggests that activation of the apoptotic pathway in neurons could be much more transient than is currently recognized. Here, we investigated whether the apoptotic pathway in neurons is a persistent signal or a transient pulse in continuous presence of apoptotic stimulus. We have examined this at three key steps in apoptotic signaling: phosphorylation of c-Jun, induction of the BH3-only family proteins and Bax activation. Strikingly, we found all three of these events occur as transient signals following Nerve Growth Factor (NGF) deprivation-induced apoptosis in sympathetic neurons. This transient apoptosis signal would effectively allow neurons to reset and permit recovery if the apoptotic stimulus is reversed. Excitingly, we have also discovered that a neuron’s ability to recover from an apoptotic signal is dependent on expression of the anti-apoptotic Bcl-2 family protein Bcl-xL. Bcl-xL-deficient neurons lose the ability to recover from NGF deprivation even if NGF is restored. Additionally, we show that recovery from a previous exposure to NGF deprivation is protective against subsequent deprivation. Together, these results define a novel mechanism by which apoptosis is regulated in neurons where the transient pulse of the apoptotic signaling supports neuronal resilience.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"25 1","pages":""},"PeriodicalIF":12.4,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142490649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RIP1 inhibition protects retinal ganglion cells in glaucoma models of ocular injury 抑制 RIP1 可保护青光眼眼损伤模型中的视网膜神经节细胞
IF 12.4 1区 生物学
Cell Death and Differentiation Pub Date : 2024-10-24 DOI: 10.1038/s41418-024-01390-7
Bo Kyoung Kim, Tatiana Goncharov, Sébastien A. Archaimbault, Filip Roudnicky, Joshua D. Webster, Peter D. Westenskow, Domagoj Vucic
{"title":"RIP1 inhibition protects retinal ganglion cells in glaucoma models of ocular injury","authors":"Bo Kyoung Kim, Tatiana Goncharov, Sébastien A. Archaimbault, Filip Roudnicky, Joshua D. Webster, Peter D. Westenskow, Domagoj Vucic","doi":"10.1038/s41418-024-01390-7","DOIUrl":"https://doi.org/10.1038/s41418-024-01390-7","url":null,"abstract":"<p>Receptor-interacting protein 1 (RIP1, RIPK1) is a critical mediator of multiple signaling pathways that promote inflammatory responses and cell death. The kinase activity of RIP1 contributes to the pathogenesis of a number of inflammatory and neurodegenerative diseases. However, the role of RIP1 in retinopathies remains unclear. This study demonstrates that RIP1 inhibition protects retinal ganglion cells (RGCs) in preclinical glaucoma models. Genetic inactivation of RIP1 improves RGC survival and preserves retinal function in the preclinical glaucoma models of optic nerve crush (ONC) and ischemia–reperfusion injury (IRI). In addition, the involvement of necroptosis in ONC and IRI glaucoma models was examined by utilizing RIP1 kinase-dead (RIP1-KD), RIP3 knockout (RIP3-KO), and MLKL knockout (MLKL-KO) mice. The number of RGCs, retinal thickness, and visual acuity were rescued in RIP1-kinase-dead (RIP1-KD) mice in both models, while wild-type (WT) mice experienced significant retinal thinning, RGC loss, and vision impairment. RIP3-KO and MLKL-KO mice showed moderate protective effects in the IRI model and limited in the ONC model. Furthermore, we confirmed that a glaucoma causative mutation in optineurin, OPTN-E50K, sensitizes cells to RIP1-mediated inflammatory cell death. RIP1 inhibition reduces RGC death and axonal degeneration following IRI in mice expressing OPTN-WT and OPTN-E50K variant mice. We demonstrate that RIP1 inactivation suppressed microglial infiltration in the RGC layer following glaucomatous damage. Finally, this study highlights that human glaucomatous retinas exhibit elevated levels of <i>TNF</i> and <i>RIP3</i> mRNA and microglia infiltration, thus demonstrating the role of neuroinflammation in glaucoma pathogenesis. Altogether, these data indicate that RIP1 plays an important role in modulating neuroinflammation and that inhibiting RIP1 activity may provide a neuroprotective therapy for glaucoma.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"17 1","pages":""},"PeriodicalIF":12.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TP53: the unluckiest of genes? TP53:最不幸的基因?
IF 12.4 1区 生物学
Cell Death and Differentiation Pub Date : 2024-10-23 DOI: 10.1038/s41418-024-01391-6
Andreas C. Joerger, Thorsten Stiewe, Thierry Soussi
{"title":"TP53: the unluckiest of genes?","authors":"Andreas C. Joerger, Thorsten Stiewe, Thierry Soussi","doi":"10.1038/s41418-024-01391-6","DOIUrl":"https://doi.org/10.1038/s41418-024-01391-6","url":null,"abstract":"<p>The transcription factor p53 plays a key role in the cellular defense against cancer development. It is inactivated in virtually every tumor, and in every second tumor this inactivation is due to a mutation in the <i>TP53</i> gene. In this perspective, we show that this diverse mutational spectrum is unique among all other cancer-associated proteins and discuss what drives the selection of <i>TP53</i> mutations in cancer. We highlight that several factors conspire to make the p53 protein particularly vulnerable to inactivation by the mutations that constantly plague our genome. It appears that the <i>TP53</i> gene has emerged as a victim of its own evolutionary past that shaped its structure and function towards a pluripotent tumor suppressor, but came with an increased structural fragility of its DNA-binding domain. <i>TP53</i> loss of function - with associated dominant-negative effects - is the main mechanism that will impair <i>TP53</i> tumor suppressive function, regardless of whether a neomorphic phenotype is associated with some of these variants.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"210 1","pages":""},"PeriodicalIF":12.4,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oncometabolites at the crossroads of genetic, epigenetic and ecological alterations in cancer 处于癌症遗传、表观遗传和生态改变交叉口的肿瘤代谢物
IF 12.4 1区 生物学
Cell Death and Differentiation Pub Date : 2024-10-23 DOI: 10.1038/s41418-024-01402-6
Letizia Lanzetti
{"title":"Oncometabolites at the crossroads of genetic, epigenetic and ecological alterations in cancer","authors":"Letizia Lanzetti","doi":"10.1038/s41418-024-01402-6","DOIUrl":"https://doi.org/10.1038/s41418-024-01402-6","url":null,"abstract":"<p>By the time a tumor reaches clinical detectability, it contains around 10<sup>8</sup>–10<sup>9</sup> cells. However, during tumor formation, significant cell loss occurs due to cell death. In some estimates, it could take up to a thousand cell generations, over a ~ 20-year life-span of a tumor, to reach clinical detectability, which would correspond to a “theoretical” generation of ~10<sup>30</sup> cells. These rough calculations indicate that cancers are under negative selection. The fact that they thrive implies that they “evolve”, and that their evolutionary trajectories are shaped by the pressure of the environment. Evolvability of a cancer is a function of its heterogeneity, which could be at the genetic, epigenetic, and ecological/microenvironmental levels [1]. These principles were summarized in a proposed classification in which Evo (evolutionary) and Eco (ecological) indexes are used to label cancers [1]. The Evo index addresses cancer cell-autonomous heterogeneity (genetic/epigenetic). The Eco index describes the ecological landscape (non-cell-autonomous) in terms of hazards to cancer survival and resources available. The reciprocal influence of Evo and Eco components is critical, as it can trigger self-sustaining loops that shape cancer evolvability [2]. Among the various hallmarks of cancer [3], metabolic alterations appear unique in that they intersect with both Evo and Eco components. This is partly because altered metabolism leads to the accumulation of oncometabolites. These oncometabolites have traditionally been viewed as mediators of non-cell-autonomous alterations in the cancer microenvironment. However, they are now increasingly recognized as inducers of genetic and epigenetic modifications. Thus, oncometabolites are uniquely positioned at the crossroads of genetic, epigenetic and ecological alterations in cancer. In this review, the mechanisms of action of oncometabolites will be summarized, together with their roles in the Evo and Eco phenotypic components of cancer evolvability. An evolutionary perspective of the impact of oncometabolites on the natural history of cancer will be presented.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"234 1","pages":""},"PeriodicalIF":12.4,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial Expression of Concern: The NAD+ salvage pathway modulates cancer cell viability via p73 社论表达关注:NAD+ 挽救途径通过 p73 调节癌细胞的活力。
IF 13.7 1区 生物学
Cell Death and Differentiation Pub Date : 2024-10-18 DOI: 10.1038/s41418-024-01382-7
T. Sharif, D.-G. Ahn, R.-Z. Liu, E. Pringle, E. Martell, C. Dai, A. Nunokawa, M. Kwak, D. Clements, J. P. Murphy, C. Dean, P. Marcato, C. McCormick, R. Godbout, S. A. Gujar, P. W. K. Lee
{"title":"Editorial Expression of Concern: The NAD+ salvage pathway modulates cancer cell viability via p73","authors":"T. Sharif,&nbsp;D.-G. Ahn,&nbsp;R.-Z. Liu,&nbsp;E. Pringle,&nbsp;E. Martell,&nbsp;C. Dai,&nbsp;A. Nunokawa,&nbsp;M. Kwak,&nbsp;D. Clements,&nbsp;J. P. Murphy,&nbsp;C. Dean,&nbsp;P. Marcato,&nbsp;C. McCormick,&nbsp;R. Godbout,&nbsp;S. A. Gujar,&nbsp;P. W. K. Lee","doi":"10.1038/s41418-024-01382-7","DOIUrl":"10.1038/s41418-024-01382-7","url":null,"abstract":"","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"31 11","pages":"1577-1577"},"PeriodicalIF":13.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41418-024-01382-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Myeloid Mir34a suppresses colitis-associated colon cancer: characterization of mediators by single-cell RNA sequencing 髓系 Mir34a 可抑制结肠炎相关性结肠癌:通过单细胞 RNA 测序确定介质的特征
IF 12.4 1区 生物学
Cell Death and Differentiation Pub Date : 2024-10-18 DOI: 10.1038/s41418-024-01380-9
Janine König, Matjaz Rokavec, Meryem Gülfem Öner-Ziegler, Ye Fei, Heiko Hermeking
{"title":"Myeloid Mir34a suppresses colitis-associated colon cancer: characterization of mediators by single-cell RNA sequencing","authors":"Janine König, Matjaz Rokavec, Meryem Gülfem Öner-Ziegler, Ye Fei, Heiko Hermeking","doi":"10.1038/s41418-024-01380-9","DOIUrl":"https://doi.org/10.1038/s41418-024-01380-9","url":null,"abstract":"<p>We have previously shown that general deletion of the gene encoding the p53-inducible Mir34a microRNA enhances the number and invasion of colitis-associated colorectal cancers (CACs) in mice. Since the p53-pathway has been implicated in tumor-suppression mediated by cells in the tumor microenvironment (TME) we deleted <i>Mir34a</i> in myeloid cells and characterized CACs in these with scRNA-Seq (single cell RNA sequencing). This revealed an increase in specific macrophage subtypes, such as <i>Cdk8</i><sup>+</sup> macrophages and <i>Mrc1</i><sup>+</sup>, M2-like macrophages. The latter displayed elevated expression of 21 known Mir34a target mRNAs, including <i>Csf1r, Axl, Foxp1, Ccr1, Nampt, and Tgfbr2</i>, and 32 predicted Mir34a target mRNAs. Furthermore, <i>Mir34a</i>-deficient BMDMs showed enhanced migration, elevated expression of <i>Csf1r</i> and a shift towards M2-like polarization when compared to <i>Mir34a</i>-proficient BMDMs. Concomitant deletion of <i>Csf1r</i> or treatment with a <i>Csf1r</i> inhibitor reduced the CAC burden and invasion in these mice. Notably, loss of myeloid Mir34a function resulted in a prominent, inflammatory CAC cell subtype, which displayed epithelial and macrophage markers. These cells displayed high levels of the EMT transcription factor Zeb2 and may therefore enhance the invasiveness of CACs. Taken together, our results provide in vivo evidence for a tumor suppressive role of myeloid <i>Mir34a</i> in CACs which is, at least in part, mediated by maintaining macrophages in an M1-like state via repression of Mir34a targets, such as <i>Csf1r</i>. Collectively, these findings may serve to identify new therapeutic targets and approaches for treatment of CAC.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"232 1","pages":""},"PeriodicalIF":12.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring fructose metabolism as a potential therapeutic approach for pancreatic cancer 探索果糖代谢作为胰腺癌潜在治疗方法的可能性
IF 12.4 1区 生物学
Cell Death and Differentiation Pub Date : 2024-10-15 DOI: 10.1038/s41418-024-01394-3
Chengqiang Wang, Lu Wang, Qing Zhao, Jiao Ma, Yitao Li, Junliang Kuang, Xintong Yang, Huichang Bi, Aiping Lu, Kenneth C. P. Cheung, Gerry Melino, Wei Jia
{"title":"Exploring fructose metabolism as a potential therapeutic approach for pancreatic cancer","authors":"Chengqiang Wang, Lu Wang, Qing Zhao, Jiao Ma, Yitao Li, Junliang Kuang, Xintong Yang, Huichang Bi, Aiping Lu, Kenneth C. P. Cheung, Gerry Melino, Wei Jia","doi":"10.1038/s41418-024-01394-3","DOIUrl":"https://doi.org/10.1038/s41418-024-01394-3","url":null,"abstract":"<p>Excessive fructose intake has been associated with the development and progression of pancreatic cancer. This study aimed to elucidate the relationship between fructose utilization and pancreatic cancer progression. Our findings revealed that pancreatic cancer cells have a high capacity to utilize fructose and are capable of converting glucose to fructose via the <i>AKR1B1</i>-mediated polyol pathway, in addition to uptake via the fructose transporter GLUT5. Fructose metabolism exacerbates pancreatic cancer proliferation by enhancing glycolysis and accelerating the production of key metabolites that regulate angiogenesis. However, pharmacological blockade of fructose metabolism has been shown to slow pancreatic cancer progression and synergistically enhance anti-tumor capabilities when combined with anti-angiogenic agents. Overall, targeting fructose metabolism may prove to be a promising therapeutic approach in the treatment of pancreatic cancer.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"81 1","pages":""},"PeriodicalIF":12.4,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信