Cell Stress & Chaperones最新文献

筛选
英文 中文
Biochemical characterization of ClpB and DnaK from Anaplasma phagocytophilum 噬噬原虫 ClpB 和 DnaK 的生化特征。
IF 3.3 3区 生物学
Cell Stress & Chaperones Pub Date : 2024-06-20 DOI: 10.1016/j.cstres.2024.06.003
Chathurange B. Ranaweera , Sunitha Shiva , Swetha Madesh , Deepika Chauhan , Roman R. Ganta , Michal Zolkiewski
{"title":"Biochemical characterization of ClpB and DnaK from Anaplasma phagocytophilum","authors":"Chathurange B. Ranaweera ,&nbsp;Sunitha Shiva ,&nbsp;Swetha Madesh ,&nbsp;Deepika Chauhan ,&nbsp;Roman R. Ganta ,&nbsp;Michal Zolkiewski","doi":"10.1016/j.cstres.2024.06.003","DOIUrl":"10.1016/j.cstres.2024.06.003","url":null,"abstract":"<div><p><em>Anaplasma phagocytophilum</em> is an intracellular tick-transmitted bacterial pathogen that infects neutrophils in mammals and causes granulocytic anaplasmosis. In this study, we investigated the molecular chaperones ClpB and DnaK from <em>A. phagocytophilum</em>. In <em>Escherichia coli</em>, ClpB cooperates with DnaK and its co-chaperones DnaJ and GrpE in ATP-dependent reactivation of aggregated proteins. Since ClpB is not produced in metazoans, it is a promising target for developing antimicrobial therapies, which generates interest in studies on that chaperone’s role in pathogenic bacteria. We found that ClpB and DnaK are transcriptionally upregulated in <em>A. phagocytophilum</em> 3–5 days after infection of human HL-60 and tick ISE6 cells, which suggests an essential role of the chaperones in supporting the pathogen’s intracellular life cycle. Multiple sequence alignments show that <em>A. phagocytophilum</em> ClpB and DnaK contain all structural domains that were identified in their previously studied orthologs from other bacteria. Both <em>A. phagocytophilum</em> ClpB and DnaK display ATPase activity, which is consistent with their participation in the ATP-dependent protein disaggregation system. However, despite a significant sequence similarity between the chaperones from <em>A. phagocytophilum</em> and those from <em>E. coli</em>, the former were not as effective as their <em>E. coli</em> orthologs during reactivation of aggregated proteins <em>in vitro</em> and in supporting the survival of <em>E. coli</em> cells under heat stress. We conclude that the <em>A. phagocytophilum</em> chaperones might have evolved with distinct biochemical properties to maintain the integrity of pathogenic proteins under unique stress conditions of an intracellular environment of host cells.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524001068/pdfft?md5=49daff0ee5c7e6a52943d2057ee3c41f&pid=1-s2.0-S1355814524001068-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141440199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mild heat shock at 40 °C increases levels of autophagy: Role of Nrf2 40ºC 的轻度热休克可提高自噬水平:Nrf2 的作用。
IF 3.3 3区 生物学
Cell Stress & Chaperones Pub Date : 2024-06-14 DOI: 10.1016/j.cstres.2024.06.001
Mélanie Grondin, Claire Chabrol, Diana A. Averill-Bates
{"title":"Mild heat shock at 40 °C increases levels of autophagy: Role of Nrf2","authors":"Mélanie Grondin,&nbsp;Claire Chabrol,&nbsp;Diana A. Averill-Bates","doi":"10.1016/j.cstres.2024.06.001","DOIUrl":"10.1016/j.cstres.2024.06.001","url":null,"abstract":"<div><p>The exposure to low doses of stress induces an adaptive survival response that involves the upregulation of cellular defense systems such as heat shock proteins (Hsps), anti-apoptosis proteins, and antioxidants. Exposure of cells to elevated, non-lethal temperatures (39–41 °C) is an adaptive survival response known as thermotolerance, which protects cells against subsequent lethal stress such as heat shock (&gt;41.5 °C). However, the initiating factors in this adaptive survival response are not understood. This study aims to determine whether autophagy can be activated by heat shock at 40 °C and if this response is mediated by the transcription factor Nrf2. Thermotolerant cells, which were developed during 3 h at 40 °C, were resistant to caspase activation at 42 °C. Autophagy was activated when cells were heated from 5 to 60 min at 40 °C. Levels of acidic vesicular organelles (AVOs) and autophagy proteins Beclin-1, LC3-II/LC3-I, Atg7, Atg5, Atg12–Atg5, and p62 were increased. When Nrf2 was overexpressed or depleted in cells, levels of AVOs and autophagy proteins were higher in unstressed cells, compared to the wild type. Stress induced by mild heat shock at 40 °C further increased levels of most autophagy proteins in cells with overexpression or depletion of Nrf2. Colocalization of p62 and Keap1 occurred. When Nrf2 levels are low, activation of autophagy would likely compensate as a defense mechanism to protect cells against stress. An improved understanding of autophagy in the context of cellular responses to physiological heat shock could be useful for cancer treatment by hyperthermia and the protective role of adaptive responses against environmental stresses.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524000786/pdfft?md5=f2b8911030277b82acebd30bccee89e5&pid=1-s2.0-S1355814524000786-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141330405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An update on the status of HSP90 inhibitors in cancer clinical trials HSP90 抑制剂在癌症临床试验中的最新进展。
IF 3.3 3区 生物学
Cell Stress & Chaperones Pub Date : 2024-06-13 DOI: 10.1016/j.cstres.2024.05.005
Shraddha Rastogi , Abhinav Joshi , Nahoko Sato , Sunmin Lee , Min-Jung Lee , Jane B. Trepel , Len Neckers
{"title":"An update on the status of HSP90 inhibitors in cancer clinical trials","authors":"Shraddha Rastogi ,&nbsp;Abhinav Joshi ,&nbsp;Nahoko Sato ,&nbsp;Sunmin Lee ,&nbsp;Min-Jung Lee ,&nbsp;Jane B. Trepel ,&nbsp;Len Neckers","doi":"10.1016/j.cstres.2024.05.005","DOIUrl":"10.1016/j.cstres.2024.05.005","url":null,"abstract":"<div><p>The evolutionary conserved molecular chaperone heat shock protein 90 (HSP90) plays an indispensable role in tumorigenesis by stabilizing client oncoproteins. Although the functionality of HSP90 is tightly regulated, cancer cells exhibit a unique dependence on this chaperone, leading to its overexpression, which has been associated with poor prognosis in certain malignancies. While various strategies targeting heat shock proteins (HSPs) involved in carcinogenesis have been explored, only inhibition of HSP90 has consistently and effectively resulted in proteasomal degradation of its client proteins. To date, a total of 22 HSP90 inhibitors (HSP90i) have been tested in 186 cancer clinical trials, as reported by clinicaltrials.gov. Among these trials, 60 % have been completed, 10 % are currently active, and 30 % have been suspended, terminated, or withdrawn. HSP90 inhibitors (HSP90i) have been used as single agents or in combination with other drugs for the treatment of various cancer types in clinical trials. Notably, improved clinical outcomes have been observed when HSP90i are used in combination therapies, as they exhibit a synergistic antitumor effect. However, as single agents, HSP90i have shown limited clinical activity due to drug-related toxicity or therapy resistance. Recently, active trials conducted in Japan evaluating TAS-116 (pimitespib) have demonstrated promising results with low toxicity as monotherapy and in combination with the immune checkpoint inhibitor nivolumab. Exploratory biomarker analyses performed in various trials have demonstrated target engagement that suggests the potential for identifying patient populations that may respond favorably to the therapy. In this review, we discuss the advances made in the past 5 years regarding HSP90i and their implications in anticancer therapeutics. Our focus lies in evaluating drug efficacy, prognosis forecast, pharmacodynamic biomarkers, and clinical outcomes reported in published trials. Through this comprehensive review, we aim to shed light on the progress and potential of HSP90i as promising therapeutic agents in cancer treatment.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524000774/pdfft?md5=db192ffc0850103c8e0e50259ad55281&pid=1-s2.0-S1355814524000774-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141327280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial Board Members/Copyright 编委会成员/版权
IF 3.8 3区 生物学
Cell Stress & Chaperones Pub Date : 2024-06-01 DOI: 10.1016/S1355-8145(24)00104-4
{"title":"Editorial Board Members/Copyright","authors":"","doi":"10.1016/S1355-8145(24)00104-4","DOIUrl":"https://doi.org/10.1016/S1355-8145(24)00104-4","url":null,"abstract":"","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524001044/pdfft?md5=b068a17900e10325cf65c9a3c10b176e&pid=1-s2.0-S1355814524001044-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141325236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover and caption 封面和标题
IF 3.8 3区 生物学
Cell Stress & Chaperones Pub Date : 2024-06-01 DOI: 10.1016/S1355-8145(24)00103-2
{"title":"Cover and caption","authors":"","doi":"10.1016/S1355-8145(24)00103-2","DOIUrl":"https://doi.org/10.1016/S1355-8145(24)00103-2","url":null,"abstract":"","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524001032/pdfft?md5=6de4fd41fce078676ab53363f4ba2cba&pid=1-s2.0-S1355814524001032-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141325235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms involved in the regulation of mitochondrial quality control by PGAM5 in heart failure 心力衰竭中 PGAM5 对线粒体质量控制的调节机制。
IF 3.8 3区 生物学
Cell Stress & Chaperones Pub Date : 2024-06-01 DOI: 10.1016/j.cstres.2024.05.004
Yanli Wang , Tiantian Ren , Cuizhi Li , Qiaomin Wu, Jinfeng Liu, Xuanke Guan, Xing Chang, Zhiming Liu, Ruxiu Liu
{"title":"Mechanisms involved in the regulation of mitochondrial quality control by PGAM5 in heart failure","authors":"Yanli Wang ,&nbsp;Tiantian Ren ,&nbsp;Cuizhi Li ,&nbsp;Qiaomin Wu,&nbsp;Jinfeng Liu,&nbsp;Xuanke Guan,&nbsp;Xing Chang,&nbsp;Zhiming Liu,&nbsp;Ruxiu Liu","doi":"10.1016/j.cstres.2024.05.004","DOIUrl":"10.1016/j.cstres.2024.05.004","url":null,"abstract":"<div><p>Heart failure (HF) refers to a group of clinical syndromes in which various heart diseases lead to the inability of cardiac output to meet the metabolic needs of the body’s tissues. Cardiac metabolism requires enormous amounts of energy; thus, impaired myocardial energy metabolism is considered a key factor in the occurrence and development of HF. Mitochondria serve as the primary energy source for cardiomyocytes, and their regular functionality underpins healthy cardiac function. The mitochondrial quality control system is a crucial mechanism for regulating the functionality of cardiomyocytes, and any abnormality in this system can potentially impact the morphology and structure of mitochondria, as well as the energy metabolism of cardiomyocytes. Phosphoglycerate mutase 5 (PGAM5), a multifunctional protein, plays a key role in the regulation of mitochondrial quality control through multiple pathways. Therefore, abnormal PGAM5 function is closely related to mitochondrial damage. This article reviews the mechanism of PGAM5′s involvement in the regulation of the mitochondrial quality control system in the occurrence and development of HF, thereby providing a theoretical basis for future in-depth research.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524000762/pdfft?md5=aadafd8230818ef5065e9efa8c5b8594&pid=1-s2.0-S1355814524000762-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141183946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial Chaperone Code: Just warming up 线粒体伴侣密码刚刚热身
IF 3.8 3区 生物学
Cell Stress & Chaperones Pub Date : 2024-06-01 DOI: 10.1016/j.cstres.2024.05.002
R. Felipe Perez , Gianna Mochi , Ariba Khan , Mark Woodford
{"title":"Mitochondrial Chaperone Code: Just warming up","authors":"R. Felipe Perez ,&nbsp;Gianna Mochi ,&nbsp;Ariba Khan ,&nbsp;Mark Woodford","doi":"10.1016/j.cstres.2024.05.002","DOIUrl":"10.1016/j.cstres.2024.05.002","url":null,"abstract":"<div><p>More than 99% of the mitochondrial proteome is encoded by the nucleus and requires refolding following import. Therefore, mitochondrial proteins require the coordinated action of molecular chaperones for their folding and activation. Several heat shock protein (Hsp) molecular chaperones, including members of the Hsp27, Hsp40/70, and Hsp90 families, as well as the chaperonin complex Hsp60/10 have an established role in mitochondrial protein import and folding. The “Chaperone Code” describes the regulation of chaperone activity by dynamic post-translational modifications; however, little is known about the post-translational regulation of mitochondrial chaperones. Dissecting the regulation of chaperone function is essential for understanding their differential regulation in pathogenic conditions and the potential development of efficacious therapeutic strategies. Here, we summarize the recent literature on post-translational regulation of mitochondrial chaperones, the consequences for mitochondrial function, and potential implications for disease.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524000749/pdfft?md5=cabf429f9e7da88a1b10fe4fb854cd6b&pid=1-s2.0-S1355814524000749-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141024712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bag1 protein loss sensitizes mouse embryonic fibroblasts to glutathione depletion Bag1 蛋白丢失会使小鼠胚胎成纤维细胞对谷胱甘肽耗竭敏感
IF 3.8 3区 生物学
Cell Stress & Chaperones Pub Date : 2024-06-01 DOI: 10.1016/j.cstres.2024.05.003
Atsushi Inose-Maruyama , Hayato Irokawa , Kouki Takeda , Keiko Taguchi , Masanobu Morita , Masayuki Yamamoto , Masato Sasaki , Shusuke Kuge
{"title":"Bag1 protein loss sensitizes mouse embryonic fibroblasts to glutathione depletion","authors":"Atsushi Inose-Maruyama ,&nbsp;Hayato Irokawa ,&nbsp;Kouki Takeda ,&nbsp;Keiko Taguchi ,&nbsp;Masanobu Morita ,&nbsp;Masayuki Yamamoto ,&nbsp;Masato Sasaki ,&nbsp;Shusuke Kuge","doi":"10.1016/j.cstres.2024.05.003","DOIUrl":"10.1016/j.cstres.2024.05.003","url":null,"abstract":"<div><p>Bcl2-associated athanogene-1 protein (Bag1) acts as a co-chaperone of heat shock protein 70 and heat shock cognate 70 and regulates multiple cellular processes, including cell proliferation, apoptosis, environmental stress response, and drug resistance. Since <em>Bag1</em> knockout mice exhibited fetal lethality, the <em>in vivo</em> function of Bag1 remains unclear. In this study, we established a mouse line expressing <em>Bag1</em> gene missing exon 5, which corresponds to an encoding region for the interface of heat shock protein 70/heat shock cognate 70. Despite mice carrying homoalleles of the Bag1 mutant (<em>Bag1</em><sup>Δex5</sup>) expressing undetectable levels of Bag1, <em>Bag1</em><sup>Δex5</sup> homozygous mice developed without abnormalities. Bag1<sup>Δex5</sup> protein was found to be highly unstable in cells and <em>in vitro</em>. We found that the growth of mouse embryonic fibroblasts derived from <em>Bag1</em><sup>Δex5</sup>-homo mice was attenuated by doxorubicin and a glutathione (GSH) synthesis inhibitor, buthionine sulfoximine. In response to buthionine sulfoximine, <em>Bag1</em><sup>Δex5</sup>-mouse embryonic fibroblasts exhibited a higher dropping rate of GSH relative to the oxidized glutathione level. In addition, Bag1 might mitigate cellular hydrogen peroxide levels. Taken together, our results demonstrate that the loss of Bag1 did not affect mouse development and that Bag1 is involved in intracellular GSH homeostasis, namely redox homeostasis.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524000750/pdfft?md5=d9ac7bd29276d3d73e5c6e8432b99683&pid=1-s2.0-S1355814524000750-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141041008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eccentric muscle-damaging exercise in the heat lowers cellular stress prior to and immediately following future exertional heat exposure 在高温下进行肌肉损伤性偏心运动,可在今后暴露于高温之前和之后立即降低细胞应力。
IF 3.8 3区 生物学
Cell Stress & Chaperones Pub Date : 2024-05-10 DOI: 10.1016/j.cstres.2024.05.001
Ryan A. Dunn , Hui-Ying Luk , Casey R. Appell , Nigel C. Jiwan , Marcos S. Keefe , Jan-Joseph S. Rolloque , Yasuki Sekiguchi
{"title":"Eccentric muscle-damaging exercise in the heat lowers cellular stress prior to and immediately following future exertional heat exposure","authors":"Ryan A. Dunn ,&nbsp;Hui-Ying Luk ,&nbsp;Casey R. Appell ,&nbsp;Nigel C. Jiwan ,&nbsp;Marcos S. Keefe ,&nbsp;Jan-Joseph S. Rolloque ,&nbsp;Yasuki Sekiguchi","doi":"10.1016/j.cstres.2024.05.001","DOIUrl":"10.1016/j.cstres.2024.05.001","url":null,"abstract":"<div><p>Muscle-damaging exercise (e.g., downhill running [DHR]) or heat exposure bouts potentially reduce physiological and/or cellular stress during future exertional heat exposure; however, the true extent of their combined preconditioning effects is unknown. Therefore, this study investigated the effect of muscle-damaging exercise in the heat on reducing physiological and cellular stress during future exertional heat exposure. Ten healthy males (mean ± Standard Definition; age, 23 ± 3 years; body mass, 78.7 ± 11.5 kg; height, 176.9 ± 4.7 cm) completed this study. Participants were randomly assigned into two preconditioning groups: (a) DHR in the heat (ambient temperature [T<sub>amb</sub>], 35 °C; relative humidity [RH], 40%) and (b) DHR in thermoneutral (T<sub>amb</sub>, 20 °C; RH, 20%). Seven days following DHR, participants performed a 45-min flat run in the heat (Flat<sub>HEAT</sub> [T<sub>amb</sub>, 35 °C; RH, 40%]). During exercise, heart rate and rectal temperature (T<sub>rec</sub>) were recorded at baseline and every 5-min. Peripheral blood mononuclear cells were isolated to assess heat shock protein 72 (Hsp72) concentration between conditions at baseline, immediately post-DHR, and immediately pre-Flat<sub>HEAT</sub> and post-Flat<sub>HEAT</sub>. Mean T<sub>rec</sub> during Flat<sub>HEAT</sub> between hot (38.23 ± 0.38 °C) and thermoneutral DHR (38.26 ± 0.38 °C) was not significantly different (<em>P</em> = 0.68), with no mean heart rate differences during Flat<sub>HEAT</sub> between hot (172 ± 15 beats min<sup>−1</sup>) and thermoneutral conditions (174 ± 8 beats min<sup>−1</sup>; <em>P</em> = 0.58). Hsp72 concentration change from baseline to immediately pre-Flat<sub>HEAT</sub> was significantly lower in hot (−51.4%) compared to thermoneutral (+24.2%; <em>P</em> = 0.025) DHR, with Hsp72 change from baseline to immediately post-Flat<sub>HEAT</sub> also lower in hot (−52.6%) compared to thermoneutral conditions (+26.3%; <em>P</em> = 0.047). A bout of muscle-damaging exercise in the heat reduces cellular stress levels prior to and immediately following future exertional heat exposure.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524000737/pdfft?md5=7527cb8830b42a0ea4d640a6302a437a&pid=1-s2.0-S1355814524000737-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140910770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heat shock protein 72 supports extracellular matrix production in metastatic mammary tumors 热休克蛋白 72 支持转移性乳腺肿瘤细胞外基质的生成。
IF 3.8 3区 生物学
Cell Stress & Chaperones Pub Date : 2024-05-03 DOI: 10.1016/j.cstres.2024.04.006
Benjamin J. Lang , Kristina M. Holton , Martin E. Guerrero-Gimenez , Yuka Okusha , Patrick T. Magahis , Amy Shi , Mary Neguse , Shreya Venkatesh , Anh M. Nhu , Jason E. Gestwicki , Stuart K. Calderwood
{"title":"Heat shock protein 72 supports extracellular matrix production in metastatic mammary tumors","authors":"Benjamin J. Lang ,&nbsp;Kristina M. Holton ,&nbsp;Martin E. Guerrero-Gimenez ,&nbsp;Yuka Okusha ,&nbsp;Patrick T. Magahis ,&nbsp;Amy Shi ,&nbsp;Mary Neguse ,&nbsp;Shreya Venkatesh ,&nbsp;Anh M. Nhu ,&nbsp;Jason E. Gestwicki ,&nbsp;Stuart K. Calderwood","doi":"10.1016/j.cstres.2024.04.006","DOIUrl":"10.1016/j.cstres.2024.04.006","url":null,"abstract":"<div><p>This study identified tumorigenic processes most dependent on murine heat shock protein 72 (HSP72) in the mouse mammary tumor virus-PyMT mammary tumor model, which give rise to spontaneous mammary tumors that exhibit HSP72-dependent metastasis to the lung. RNA-seq expression profiling of <em>Hspa1a/Hspa1b (Hsp72)</em> WT and <em>Hsp72</em><sup>−/−</sup> primary mammary tumors discovered significantly lower expression of genes encoding components of the extracellular matrix (ECM) in <em>Hsp72</em> knockout mammary tumors compared to WT controls. <em>In vitro</em> studies found that genetic or chemical inhibition of HSP72 activity in cultured collagen-expressing human or murine cells also reduces mRNA and protein levels of COL1A1 and several other ECM-encoding genes. In search of a possible mechanistic basis for this relationship, we found HSP72 to support the activation of the tumor growth factor-β–suppressor of mothers against decapentaplegic-3 signaling pathway and evidence of suppressor of mothers against decapentaplegic-3 and HSP72 coprecipitation, suggesting potential complex formation. Human <em>COL1A1</em> mRNA expression was found to have prognostic value for HER2+ breast tumors over other breast cancer subtypes, suggesting a possible human disease context where targeting HSP72 may have a therapeutic rationale. Analysis of human HER2+ breast tumor gene expression data using a gene set comprising ECM-related gene and protein folding-related gene as an input to the statistical learning algorithm, <em>Galgo</em>, found a subset of these genes that can collectively stratify patients by relapse-free survival, further suggesting a potential interplay between the ECM and protein-folding genes may contribute to tumor progression.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524000725/pdfft?md5=d45a8b83fdfc70c0e9683647429bc4ef&pid=1-s2.0-S1355814524000725-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140862272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信