Cell Stress & Chaperones最新文献

筛选
英文 中文
FKBP51 functions in the regulation of circadian rhythm and Alzheimer's disease FKBP51 在调节昼夜节律和阿尔茨海默病中的功能
IF 3.3 3区 生物学
Cell Stress & Chaperones Pub Date : 2025-02-09 DOI: 10.1016/j.cstres.2025.02.002
Jill L. Johnson
{"title":"FKBP51 functions in the regulation of circadian rhythm and Alzheimer's disease","authors":"Jill L. Johnson","doi":"10.1016/j.cstres.2025.02.002","DOIUrl":"10.1016/j.cstres.2025.02.002","url":null,"abstract":"<div><div>The FK506-binding protein 51 (FKBP51) is an important regulator of glucocorticoid receptor activity and an Hsp90 cochaperone. FKBP51 has previously been identified as a drug target due to its roles in stress-related disorders and pain tolerance. Two recent publications in Cell Stress and Chaperones further explore FKBP51 functions. To understand whether FKBP51 plays a role in sleep disturbances linked to stress disorders, one study examined the role of FKBP51 in regulating the circadian rhythm. Broadening the range of Hsp90 cochaperone function, the other article summarized the role of multiple cochaperones in Alzheimer’s disease, discussing how cochaperones affect both Aβ and tau. They emphasize the role of FKBP51 in promoting tau pathogenesis and discuss the small molecule LA1011, which binds Hsp90 and competes with Hsp90-FKBP51 interaction. Further studies with LA1011 may lead to new treatments for Alzheimer’s disease and will help clarify the contributions of FKBP51 to human disorders.</div></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"30 2","pages":"Pages 81-83"},"PeriodicalIF":3.3,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143398314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular response of canine testis to GnRH agonist: Insights into AR, HIF-1α, and HSPs expression during arrest and recovery of spermatogenesis 犬睾丸对GnRH激动剂的分子反应:在精子发生停止和恢复过程中对AR、HIF-1α和HSPs表达的见解
IF 3.3 3区 生物学
Cell Stress & Chaperones Pub Date : 2025-02-01 DOI: 10.1016/j.cstres.2024.11.007
Anastasiia Vasetska , Eva-Maria Packeiser , Hanna Körber , Selim Aslan , Serhan Ay , Murat Findik , Firdevs Binli , Murat Selçuk , Christelle Speiser-Fontaine , Sandra Goericke-Pesch
{"title":"Molecular response of canine testis to GnRH agonist: Insights into AR, HIF-1α, and HSPs expression during arrest and recovery of spermatogenesis","authors":"Anastasiia Vasetska ,&nbsp;Eva-Maria Packeiser ,&nbsp;Hanna Körber ,&nbsp;Selim Aslan ,&nbsp;Serhan Ay ,&nbsp;Murat Findik ,&nbsp;Firdevs Binli ,&nbsp;Murat Selçuk ,&nbsp;Christelle Speiser-Fontaine ,&nbsp;Sandra Goericke-Pesch","doi":"10.1016/j.cstres.2024.11.007","DOIUrl":"10.1016/j.cstres.2024.11.007","url":null,"abstract":"<div><div>Slow-release gonadotropin-releasing hormone (GnRH) agonist implants are frequently used for contraception in male dogs. Although the effects are fully reversible, there is still concern about the safety of the implant’s mode of action. Addressing this, we investigated cellular stress and androgen receptor (AR) signaling during downregulation and recovery. Testicular tissues were sampled from dogs castrated at different time points after GnRH implant removal and compared with untreated controls. <em>AR</em>, hypoxia-inducible factor 1 (<em>HIF1A</em>), heat shock proteins heat shock protein 72 (<em>HSP72</em>), heat shock protein 73 (heat shock cognate, HSPA8) (<em>HSP73</em>), heat shock protein A2 (<em>HSPA2</em>), heat shock protein 90 alpha (inducible isoform) (<em>HSP90AA1</em>), and heat shock protein 90 beta (constitutive isoform) (<em>HSP90AB1</em>) were investigated by quantitative real-time polymerase chain reaction and AR, HSP72, HSP73, and HSP90 immunohistochemically. While <em>AR</em>, <em>HIF1A</em>, and <em>HSP70</em> were upregulated at gene expression level, <em>HSPA8</em>, <em>HSPA2</em>, and <em>HSP90AA1</em> expression were downregulated during spermatogenic arrest; <em>HSP90AB1</em> expression did not change. Immunohistochemistry verified AR-expression in Sertoli, peritubular, and Leydig cells, occasionally also in spermatogonia. Stress-inducible HSP72 was occasionally detected, while constitutive HSP73 and HSP90 were abundantly expressed by germ cells. Our results were similar to studies on seasonal breeders such as pine voles, geese, fish, and soft-shelled turtles. Accordingly, GnRH implants did not impose additional cellular stress on testicular cells when compared with natural recrudescence. Since comparative data on HIF1α are scarce, we cannot draw conclusions about hypoxic conditions.</div></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"30 1","pages":"Pages 9-21"},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11719361/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142779494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Secreted extracellular heat shock protein gp96 and inflammatory cytokines are markers of severe malaria outcome 分泌的细胞外热休克蛋白gp96和炎症细胞因子是严重疟疾结局的标志。
IF 3.3 3区 生物学
Cell Stress & Chaperones Pub Date : 2025-02-01 DOI: 10.1016/j.cstres.2024.12.004
Fatou Thiam , Djibaba Djoumoi , Mame Ndew Mbaye , Aminata Fall , Abou Abdallah Malick Diouara , Mamadou Diop , Cheikh Momar Nguer , Babacar Mbengue , Gora Diop , Evelyne Kohli , Alioune Dieye
{"title":"Secreted extracellular heat shock protein gp96 and inflammatory cytokines are markers of severe malaria outcome","authors":"Fatou Thiam ,&nbsp;Djibaba Djoumoi ,&nbsp;Mame Ndew Mbaye ,&nbsp;Aminata Fall ,&nbsp;Abou Abdallah Malick Diouara ,&nbsp;Mamadou Diop ,&nbsp;Cheikh Momar Nguer ,&nbsp;Babacar Mbengue ,&nbsp;Gora Diop ,&nbsp;Evelyne Kohli ,&nbsp;Alioune Dieye","doi":"10.1016/j.cstres.2024.12.004","DOIUrl":"10.1016/j.cstres.2024.12.004","url":null,"abstract":"<div><div>Malaria caused by <em>Plasmodium spp.</em>, is a major public health issue in sub-Saharan Africa. The fight against malaria has stalled due to increasing resistance to treatments and insecticides. There is an urgent need to focus on new therapeutic targets to combat malaria effectively. This study aimed to measure the secreted heat shock protein gp96 levels in both malaria patients and controls. Indeed, gp96 plays a crucial role in parasite survival within the host and in establishing a successful infection. Therefore, gp96 could be a promising target for antimalarial drugs. In our study, we included 60 malaria patients, 30 with severe malaria (SM) and 30 with uncomplicated malaria (UM). Additionally, 28 controls were included. Using the ELISA method, we measured gp96 levels in the participants' blood samples. We then used the Mann–Whitney or analyse of variance tests to calculate descriptive statistics and determined the correlation between gp96 level and parasitemia using Spearman's rank correlation test. The study found that gp96 levels in the plasma significantly increased in malaria patients (23.86 ng/mL) compared to control (5.88 ng/mL), with a <em>P</em> &lt; 0.0001. Interestingly, there was a significant difference between SM (27.56 ng/mL) and UM (13.9 ng/mL), with a <em>P</em>-value of 0.001. These findings are accompanied by significantly higher parasitemia and elevated proinflammatory cytokines such as IL-17A and IL-1β levels in SM patients compared to UM and controls. Furthermore, there was no significant positive correlation between gp96 levels and parasitemia/proinflammatory cytokines. Our research has revealed, for the first time, that individuals with SM have significantly higher levels of gp96 in the context of high parasitemia and proinflammatory cytokines. Our preliminary results will be taken further to evaluate gp96 as a valuable biomarker for the diagnosis of SM and a potential target for antimalarial drug discovery.</div></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"30 1","pages":"Pages 48-56"},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761890/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142892403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover and caption 封面及标题
IF 3.3 3区 生物学
Cell Stress & Chaperones Pub Date : 2025-02-01 DOI: 10.1016/S1355-8145(25)00005-7
{"title":"Cover and caption","authors":"","doi":"10.1016/S1355-8145(25)00005-7","DOIUrl":"10.1016/S1355-8145(25)00005-7","url":null,"abstract":"","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"30 1","pages":"Page OFC"},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143427651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial Board Members/Copyright 编辑委员会成员/版权
IF 3.3 3区 生物学
Cell Stress & Chaperones Pub Date : 2025-02-01 DOI: 10.1016/S1355-8145(25)00006-9
{"title":"Editorial Board Members/Copyright","authors":"","doi":"10.1016/S1355-8145(25)00006-9","DOIUrl":"10.1016/S1355-8145(25)00006-9","url":null,"abstract":"","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"30 1","pages":"Page i"},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143427652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large-scale energy decomposition for the analysis of protein stability 大规模能量分解用于蛋白质稳定性分析。
IF 3.3 3区 生物学
Cell Stress & Chaperones Pub Date : 2025-02-01 DOI: 10.1016/j.cstres.2025.01.001
Samman Mansoor , Elena Frasnetti , Ivan Cucchi , Andrea Magni , Giorgio Bonollo , Stefano A. Serapian , Luca F. Pavarino , Giorgio Colombo
{"title":"Large-scale energy decomposition for the analysis of protein stability","authors":"Samman Mansoor ,&nbsp;Elena Frasnetti ,&nbsp;Ivan Cucchi ,&nbsp;Andrea Magni ,&nbsp;Giorgio Bonollo ,&nbsp;Stefano A. Serapian ,&nbsp;Luca F. Pavarino ,&nbsp;Giorgio Colombo","doi":"10.1016/j.cstres.2025.01.001","DOIUrl":"10.1016/j.cstres.2025.01.001","url":null,"abstract":"<div><div>To carry out their functions in cells, proteins are required to fold into well-defined three-dimensional conformations. The stability of the folded state dictates several aspects of protein life, such as their evolution, interactions, and selection of structures that are ultimately linked to activity. Sequence mutations may change the stability profile and consequently impact structure and function. Here, we use a simple, molecular dynamics-based energy decomposition approach to map the response to mutations of each amino acid in the sequences of a set of five test proteins with different lengths, folds, and topologies. To this end, we make use of the decomposition of the residue-pair nonbonded energy matrix. We show that parameters obtained from this analysis, namely the main eigenvalue reporting on the most stabilizing energy contributions and the spectral gap of the matrix (ENergy Gap), reproduce experimentally determined stability trends. At the same time, our approach identifies the residue-pair couplings that play key roles in defining the 3D properties of a certain fold. We discuss the relevance of these results for the design of protein mutants for experimental applications and the possibility for our energy decomposition approach to complement other computational and experimental analyses of conformational stability.</div></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"30 1","pages":"Pages 57-68"},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143063936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HSP mRNA sequences and their expression under different thermal oscillation patterns and heat stress in two populations of Nodipecten subnodosus 不同热振荡模式和热胁迫下两个种群的HSP mRNA序列及其表达。
IF 3.3 3区 生物学
Cell Stress & Chaperones Pub Date : 2025-02-01 DOI: 10.1016/j.cstres.2024.12.002
Axel Bonesteve , Salvador E. Lluch-Cota , Maria Teresa Sicard , Ilie S. Racotta , Miguel A. Tripp-Valdez , Liliana Rojo-Arreola
{"title":"HSP mRNA sequences and their expression under different thermal oscillation patterns and heat stress in two populations of Nodipecten subnodosus","authors":"Axel Bonesteve ,&nbsp;Salvador E. Lluch-Cota ,&nbsp;Maria Teresa Sicard ,&nbsp;Ilie S. Racotta ,&nbsp;Miguel A. Tripp-Valdez ,&nbsp;Liliana Rojo-Arreola","doi":"10.1016/j.cstres.2024.12.002","DOIUrl":"10.1016/j.cstres.2024.12.002","url":null,"abstract":"<div><div>Understanding the molecular mechanisms underlying thermal acclimation and heat shock responses in marine ectotherms is critical for assessing their adaptive capacity in the context of climate change and climate extremes. This study examines the expression dynamics of heat shock proteins (HSPs) in the scallop <em>Nodipecten subnodosus</em>, shedding light on their role in thermal adaptation. Our analysis revealed the presence of several conserved functional signatures in <em>N. subnodosus</em> HSPs deduced amino acid sequences. Comparative gene expression profiling between two populations of <em>N. subnodosus</em>, maintained for 15 days under constant and oscillatory thermal regimes and then exposed to acute heat stress, revealed conserved adaptive traits. The heat-inducible nature of <em>N. subnodosus</em> HSP70 (HSPA8) gene expression highlights its potential as a stress marker, in contrast to its human homolog, which is constitutively expressed. Furthermore, the identification of HSP90 (HSPC3) and its overexpression during acute heat stress underscores its critical role in initiating a protective stress response. Population-specific responses in the magnitude of gene expression were observed; however, both populations exhibited similar overall patterns of HSP induction, suggesting a shared adaptive response mechanism. This study also elucidated the diversity and expansion of members of the HSP70 family members, specifically the HSPA12 subfamily, in <em>N. subnodosus</em>. This characteristic, previously observed in other bivalves, underscores the role of HSPA12 in environmental adaptation, providing molecular plasticity to withstand varying environmental pressures. These findings offer valuable insights into the molecular basis of thermal adaptation in <em>N. subnodosus</em>, highlighting the importance of HSPs in coping with environmental stochasticity under climate change scenarios.</div></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"30 1","pages":"Pages 33-47"},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750468/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142871459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ceapin-A7 suppresses the protective effects of Octreotide in human and bovine lung endothelial cells Ceapin-A7抑制奥曲肽对人和牛肺内皮细胞的保护作用。
IF 3.3 3区 生物学
Cell Stress & Chaperones Pub Date : 2025-02-01 DOI: 10.1016/j.cstres.2024.12.001
Saikat Fakir, Madan Sigdel, Md Matiur Rahman Sarker, Joy T. Folahan, Nektarios Barabutis
{"title":"Ceapin-A7 suppresses the protective effects of Octreotide in human and bovine lung endothelial cells","authors":"Saikat Fakir,&nbsp;Madan Sigdel,&nbsp;Md Matiur Rahman Sarker,&nbsp;Joy T. Folahan,&nbsp;Nektarios Barabutis","doi":"10.1016/j.cstres.2024.12.001","DOIUrl":"10.1016/j.cstres.2024.12.001","url":null,"abstract":"<div><div>Endothelial injury can be the cause and consequence of severe inflammation and injury. Synthetic somatostatin analogs—which suppress Growth Hormone—are clinically-approved drugs associated with anti-inflammatory activities. In the present study, we suggest that the protective activities of Octreotide in human and bovine endothelial cells are mitigated by Ceapin-A7, which is an activating transcription factor 6 inhibitor. To study endothelial function, we assessed protein expression levels of key cytoskeletal proteins, as well as paracellular permeability. To evaluate inflammation, we measured factors that promote vascular leak, as well as reactive oxygen species generation. Collectively, our study supports the involvement of activating transcription factor 6 in the protective effects of Octreotide in endothelial barrier function.</div></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"30 1","pages":"Pages 1-8"},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699725/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142779493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FKBP51 overexpression in the corticolimbic system stabilizes circadian rhythms 皮质边缘系统中 FKBP51 的过度表达可稳定昼夜节律
IF 3.3 3区 生物学
Cell Stress & Chaperones Pub Date : 2025-02-01 DOI: 10.1016/j.cstres.2024.12.003
Niat T. Gebru , David Beaulieu-Abdelahad , Danielle Gulick , Laura J. Blair
{"title":"FKBP51 overexpression in the corticolimbic system stabilizes circadian rhythms","authors":"Niat T. Gebru ,&nbsp;David Beaulieu-Abdelahad ,&nbsp;Danielle Gulick ,&nbsp;Laura J. Blair","doi":"10.1016/j.cstres.2024.12.003","DOIUrl":"10.1016/j.cstres.2024.12.003","url":null,"abstract":"<div><div>Circadian rhythm disruptions have been associated with a wide range of health issues and complications, including an increased risk of circadian rhythm sleep disorders (CRSDs). CRSDs are common among individuals who have been through a traumatic event, particularly in those who have post-traumatic stress disorder (PTSD). Allelic variations in the gene encoding for FK506-binding protein 51 (FKBP51) can increase the susceptibility for PTSD and other stress-related disorders following trauma. At least one of these variants increases the levels of FKBP51 following stress through a glucocorticoid receptor-mediated process. Here, we used a mouse model that overexpresses human FKBP51 throughout the forebrain, rTgFKBP5, to investigate if elevated FKBP51 contributes to circadian rhythm disruption. Surprisingly, our findings indicate a greater rhythm amplitude and decreased rhythm fragmentation in rTgFKBP5 mice, particularly females, compared to controls. Female rTgFKBP5 mice also showed higher corticosterone levels basally and following stress exposure. Overall, this study associates FKBP51 overexpression with beneficial circadian rhythm outcomes.</div></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"30 1","pages":"Pages 22-32"},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750455/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hsp90: Bringing it all together Hsp90:把所有的东西放在一起。
IF 3.3 3区 生物学
Cell Stress & Chaperones Pub Date : 2025-02-01 DOI: 10.1016/j.cstres.2025.01.002
Georgios Ioannis Karras , Giorgio Colombo , Andrea N. Kravats
{"title":"Hsp90: Bringing it all together","authors":"Georgios Ioannis Karras ,&nbsp;Giorgio Colombo ,&nbsp;Andrea N. Kravats","doi":"10.1016/j.cstres.2025.01.002","DOIUrl":"10.1016/j.cstres.2025.01.002","url":null,"abstract":"<div><div>Heat-shock protein 90 (Hsp90) is an ancient and multifaceted protein-folding machine essential for most organisms. The past 40 years have uncovered remarkable complexity in the regulation and function of Hsp90, which dwarfs most other machines in the cell in sophistication. Here, we propose four analogies to illustrate Hsp90’s sophistication: a multifunctional Swiss Army knife, an automobile engine and its controls, a switchboard acting as a hub and directing signals, and an orchestra conductor setting the tempo of a symphony. Although each of these analogies represents some key Hsp90 activities, none of them captures the entirety of Hsp90’s complexity. Together, these roles enable Hsp90 to support both homeostasis and differentiation, both cellular stability and adaptability. At the 11th International Conference on the Hsp90 Chaperone Machine, the consensus was that to understand this major guardian of proteostasis, we need to study how the many facets of Hsp90’s function influence each other. We hope that these analogies will help to conceptually integrate the many roles of Hsp90 in proteostasis and help the field develop the practical applications of Hsp90 modulators.</div></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"30 1","pages":"Pages 69-79"},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143073987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信