Prasannan Gopikrishnan , Roshin Anie Jose , John Abraham , Devasia Kaithakulam Deepak Mathew , Kanakkaparambil Raji , Nalukudy Paramba Sakkariya Ibrahim , Packirisamy Valavan , Thaliyakulam Suresh Nisha , Varun Vijayan
{"title":"热应激对马拉巴里山羊生理参数和血液生物标志物的影响。","authors":"Prasannan Gopikrishnan , Roshin Anie Jose , John Abraham , Devasia Kaithakulam Deepak Mathew , Kanakkaparambil Raji , Nalukudy Paramba Sakkariya Ibrahim , Packirisamy Valavan , Thaliyakulam Suresh Nisha , Varun Vijayan","doi":"10.1016/j.cstres.2025.100082","DOIUrl":null,"url":null,"abstract":"<div><div>Heat stress poses a great challenge to livestock health, productivity, and adaptability, especially in tropical climates. Under the scenario of climate change and rising global temperatures, understanding the physiological, hematological, biochemical, and molecular responses to heat stress in livestock is crucial. The present study was designed to assess the physiological, hematological, biochemical, and molecular responses to heat stress in the Malabari goat breed, which originated in South India. The gene expression patterns of heat-shock proteins (HSPs) <em>HSP27</em>, <em>HSP70</em>, and <em>HSP90</em> were also assessed. Twelve adult does were divided into grazing and nongrazing groups, and the study was conducted for 2 months during winter and summer seasons. Higher ambient temperature and solar radiation were recorded in summer, with a higher temperature-humidity index indicating heat stress (77.50 ± 0.27). Significant increases in respiratory rate, rectal temperature, and surface body temperature were detected in goats, indicating that the animals were under physiological stress, especially during the summer season. The seasonal changes in these parameters differed between grazing and nongrazing goats. The pulse rate was significantly influenced by both season and grazing patterns. The hematological parameters like monocyte count, mean corpuscular hemoglobin, mean corpuscular volume, and mean corpuscular hemoglobin concentration in Malabari goats were mainly influenced by seasonal variations. However, the seasonal shift in hematocrit levels was not uniform across the grazing strategies. Biochemical parameters, including aspartate aminotransferase and alanine aminotransferase (ALT) levels, exhibited significant seasonal variations. Additionally, ALT and total protein concentrations differed between the grazing groups. The impact of seasonal variations on glucose concentration varied between grazing and nongrazing goats. <em>HSP70</em> and <em>HSP90</em> gene expression increased over the summer, but <em>HSP27</em> gene expression did not show any difference in our study. As a stress response mechanism, these results show that Malabari goats experience physiological, hematological, biochemical, and molecular changes in response to heat stress, including the upregulation of important HSPs.</div></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"30 4","pages":"Article 100082"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of heat stress on the physiological parameters and blood biomarkers in Malabari goats\",\"authors\":\"Prasannan Gopikrishnan , Roshin Anie Jose , John Abraham , Devasia Kaithakulam Deepak Mathew , Kanakkaparambil Raji , Nalukudy Paramba Sakkariya Ibrahim , Packirisamy Valavan , Thaliyakulam Suresh Nisha , Varun Vijayan\",\"doi\":\"10.1016/j.cstres.2025.100082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Heat stress poses a great challenge to livestock health, productivity, and adaptability, especially in tropical climates. Under the scenario of climate change and rising global temperatures, understanding the physiological, hematological, biochemical, and molecular responses to heat stress in livestock is crucial. The present study was designed to assess the physiological, hematological, biochemical, and molecular responses to heat stress in the Malabari goat breed, which originated in South India. The gene expression patterns of heat-shock proteins (HSPs) <em>HSP27</em>, <em>HSP70</em>, and <em>HSP90</em> were also assessed. Twelve adult does were divided into grazing and nongrazing groups, and the study was conducted for 2 months during winter and summer seasons. Higher ambient temperature and solar radiation were recorded in summer, with a higher temperature-humidity index indicating heat stress (77.50 ± 0.27). Significant increases in respiratory rate, rectal temperature, and surface body temperature were detected in goats, indicating that the animals were under physiological stress, especially during the summer season. The seasonal changes in these parameters differed between grazing and nongrazing goats. The pulse rate was significantly influenced by both season and grazing patterns. The hematological parameters like monocyte count, mean corpuscular hemoglobin, mean corpuscular volume, and mean corpuscular hemoglobin concentration in Malabari goats were mainly influenced by seasonal variations. However, the seasonal shift in hematocrit levels was not uniform across the grazing strategies. Biochemical parameters, including aspartate aminotransferase and alanine aminotransferase (ALT) levels, exhibited significant seasonal variations. Additionally, ALT and total protein concentrations differed between the grazing groups. The impact of seasonal variations on glucose concentration varied between grazing and nongrazing goats. <em>HSP70</em> and <em>HSP90</em> gene expression increased over the summer, but <em>HSP27</em> gene expression did not show any difference in our study. As a stress response mechanism, these results show that Malabari goats experience physiological, hematological, biochemical, and molecular changes in response to heat stress, including the upregulation of important HSPs.</div></div>\",\"PeriodicalId\":9684,\"journal\":{\"name\":\"Cell Stress & Chaperones\",\"volume\":\"30 4\",\"pages\":\"Article 100082\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Stress & Chaperones\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1355814525000239\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Stress & Chaperones","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1355814525000239","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
The effect of heat stress on the physiological parameters and blood biomarkers in Malabari goats
Heat stress poses a great challenge to livestock health, productivity, and adaptability, especially in tropical climates. Under the scenario of climate change and rising global temperatures, understanding the physiological, hematological, biochemical, and molecular responses to heat stress in livestock is crucial. The present study was designed to assess the physiological, hematological, biochemical, and molecular responses to heat stress in the Malabari goat breed, which originated in South India. The gene expression patterns of heat-shock proteins (HSPs) HSP27, HSP70, and HSP90 were also assessed. Twelve adult does were divided into grazing and nongrazing groups, and the study was conducted for 2 months during winter and summer seasons. Higher ambient temperature and solar radiation were recorded in summer, with a higher temperature-humidity index indicating heat stress (77.50 ± 0.27). Significant increases in respiratory rate, rectal temperature, and surface body temperature were detected in goats, indicating that the animals were under physiological stress, especially during the summer season. The seasonal changes in these parameters differed between grazing and nongrazing goats. The pulse rate was significantly influenced by both season and grazing patterns. The hematological parameters like monocyte count, mean corpuscular hemoglobin, mean corpuscular volume, and mean corpuscular hemoglobin concentration in Malabari goats were mainly influenced by seasonal variations. However, the seasonal shift in hematocrit levels was not uniform across the grazing strategies. Biochemical parameters, including aspartate aminotransferase and alanine aminotransferase (ALT) levels, exhibited significant seasonal variations. Additionally, ALT and total protein concentrations differed between the grazing groups. The impact of seasonal variations on glucose concentration varied between grazing and nongrazing goats. HSP70 and HSP90 gene expression increased over the summer, but HSP27 gene expression did not show any difference in our study. As a stress response mechanism, these results show that Malabari goats experience physiological, hematological, biochemical, and molecular changes in response to heat stress, including the upregulation of important HSPs.
期刊介绍:
Cell Stress and Chaperones is an integrative journal that bridges the gap between laboratory model systems and natural populations. The journal captures the eclectic spirit of the cellular stress response field in a single, concentrated source of current information. Major emphasis is placed on the effects of climate change on individual species in the natural environment and their capacity to adapt. This emphasis expands our focus on stress biology and medicine by linking climate change effects to research on cellular stress responses of animals, micro-organisms and plants.