{"title":"The Role of Pyruvate Kinase M2 Posttranslational Modification in the Occurrence and Development of Hepatocellular Carcinoma","authors":"Zhao Chunlian, Wan Qi, Zhao Rui","doi":"10.1002/cbf.4125","DOIUrl":"https://doi.org/10.1002/cbf.4125","url":null,"abstract":"<div>\u0000 \u0000 <p>Hepatocellular carcinoma (HCC) is one of the deadly malignant tumors that directly leads to the death of nearly one million people worldwide every year, causing a serious burden on society. In the presence of sufficient oxygen, HCC cells rapidly generate energy through aerobic glycolysis, which promotes tumor cell proliferation, immune evasion, metastasis, angiogenesis, and drug resistance. Pyruvate kinase M2 (PKM2) is a key rate-limiting enzyme in glycolysis. In recent years, studies have found that PKM2 not only exerts pyruvate kinase activity in the process of glucose metabolism, but also exerts protein kinase activity in non-metabolic pathways to affect tumor cell processes, and its activity is flexibly regulated by various posttranslational modifications such as acetylation, phosphorylation, lactylation, ubiquitination, SUMOylation, and so forth. This review summarizes the role of posttranslational modifications of PKM2-related sites in the development of HCC.</p></div>","PeriodicalId":9669,"journal":{"name":"Cell Biochemistry and Function","volume":"42 7","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Patuletin Ameliorates Inflammation and Letrozole–Induced Polycystic Ovarian Syndrome in Rats","authors":"Syeda Farah Shah, Samina Noorali, Shaheen Faizi, Almas Jabeen","doi":"10.1002/cbf.4123","DOIUrl":"10.1002/cbf.4123","url":null,"abstract":"<div>\u0000 \u0000 <p>Concerns about inflammation-related issues affecting female reproductive health are growing. Chronic low-grade inflammation in women with polycystic ovarian syndrome (PCOS) affects follicular growth, ovulation, and androgen production. The present investigation aimed to elucidate the efficacy of flavonoid patuletin in ameliorating the letrozole–induced PCOS and associated inflammation in rats. Female Wistar rats (32 days old) were divided into five groups (<i>n</i> = 12): Group I, control; Group II, vehicle control; Group III, letrozole oral (1 mg/kg) for 28 days; Group IV and Group V treatment groups, patuletin i.p. (25 mg/kg) and clomiphene citrate + metformin i.p. (50 mg/kg + 300 mg/kg), respectively. Leterozole–induced PCOS and ovarian inflammation were ameliorated by patuletin, as reflected in the improved histopathology, prevention of cyst formation, significant upregulation of growth factors such as growth differentiation factor 9 (<i>GDF-9</i>) and bone morphogenetic protein-15 (<i>BMP-15</i>) expression, and a decrease in the pro-inflammatory cytokines <i>TNF-α, IL-6</i>, and <i>COX-2</i>. Additionally, the plasma levels of reproductive hormones were restored. Upregulation of <i>FSH-R, PR</i>, and <i>CYP19a1</i>, along with downregulation of <i>ERα</i>, <i>LHR</i>, <i>CYP17a1</i>, <i>CYP11a1</i> and <i>HSDβ17a1</i>, showed the regulation of gonadotropin receptors and steroid biosynthesis genes in ovarian tissues. Patuletin demonstrated a promising protective approach against the biological model of PCOS by increasing the inflammation in ovarian tissues with consequent regulation of growth factors, enzymes, and hormones, and might be used as adjuvant therapy in the treatment of problems related to female reproductive health.</p></div>","PeriodicalId":9669,"journal":{"name":"Cell Biochemistry and Function","volume":"42 7","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Saira Fayyaz, Muhammad Islam, Abrar Ahmed, Hamid Saeed
{"title":"Evaluation of Anti-Hyperlipidemic Activity of the Seeds Extracts of Ficus carica: In Vitro and In Silico Approaches","authors":"Saira Fayyaz, Muhammad Islam, Abrar Ahmed, Hamid Saeed","doi":"10.1002/cbf.4124","DOIUrl":"https://doi.org/10.1002/cbf.4124","url":null,"abstract":"<div>\u0000 \u0000 <p>Obesity and hyperlipidemia have become major disorders predominantly causing prevailing cardiovascular diseases and ultimately death. The prolonged use of anti-obesity drugs and statins for reducing obesity and blood lipid levels is leading toward adverse effects of kidneys and muscles, specifically rhabdomyolysis. The objective of this study is to evaluate potential of seeds of <i>Ficus carica</i> against hyperlipidemia. Various extracts and isolated compounds from fig seeds were analyzed and evaluated for their anti-hyperlipidemic potential. Methanol extract and its ethyl acetate fraction showed maximum pancreatic lipase inhibition of 61.93% and 86.45% in comparison to reference drug Orlistat. Four compounds isolated by HPLC-PDA technique were determined as Gallic acid, Catechin, Epicatechin, and Quercetin also showed strong potential to inhibit enzyme pancreatic lipase comparable to Orlistat. These isolated compounds were further analyzed for molecular docking and MM-GBSA studies. Three ligands, namely Quercetin, Epicatechin, and Catechin were found more effective against pancreatic lipase as these possessed docking scores (−9.881, −9.741, −9.410) higher to that of the reference ligand Orlistat (−5.273). The binding free energies of these compounds were −55.03, −56.54, and 60.35 kcal/mol, respectively. The results have shown that Quercetin has the highest binding affinity correlating with the highest inhibition of pancreatic lipase enzyme 1LPB. Hence, it is suggested that seeds of <i>F. carica</i> have promising anti-hyperlipidemic potential and foremost in reducing obesity.</p></div>","PeriodicalId":9669,"journal":{"name":"Cell Biochemistry and Function","volume":"42 7","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rafaella Mergener, Lívia Polisseni Cotta Nascimento, Ana Kalise Böttcher, Marcela Rodrigues Nunes, Paulo Ricardo Gazzola Zen
{"title":"What Can Really Be Considered a Syndrome? An Insight Based on 16p11.2 Microduplication","authors":"Rafaella Mergener, Lívia Polisseni Cotta Nascimento, Ana Kalise Böttcher, Marcela Rodrigues Nunes, Paulo Ricardo Gazzola Zen","doi":"10.1002/cbf.4121","DOIUrl":"https://doi.org/10.1002/cbf.4121","url":null,"abstract":"<div>\u0000 \u0000 <p>What is the definition of Syndrome? Since the beginning of studies in genetics, certain terminologies have been created and used to define groups of diseases or alterations. With the advancement of knowledge and the emergence of new technologies, the use of basic concepts is being done in a mistaken or often confusing way. Because of this, revisiting and readjusting the old terms becomes imminent. Here, we explore these concepts and their use, through a literature compilation of an already well-defined genetic alteration (16q11.2 microduplication). We bring comparisons in clinical and molecular scope of the alteration itself and its diagnostic methods, to improve the report of cases, rescuing terminologies and their applicability nowadays.</p></div>","PeriodicalId":9669,"journal":{"name":"Cell Biochemistry and Function","volume":"42 7","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhong Ma, Xin Liu, Mingtao Zhang, Zuolong Wu, Xianxu Zhang, Shicheng Li, Jiangdong An, Zhiqiang Luo
{"title":"Research Progress on the Role of Cartilage Endplate in Intervertebral Disc Degeneration","authors":"Zhong Ma, Xin Liu, Mingtao Zhang, Zuolong Wu, Xianxu Zhang, Shicheng Li, Jiangdong An, Zhiqiang Luo","doi":"10.1002/cbf.4118","DOIUrl":"https://doi.org/10.1002/cbf.4118","url":null,"abstract":"<div>\u0000 \u0000 <p>Low back pain significantly impacts individuals' quality of life, with intervertebral disc degeneration (IDD) being a primary contributor to this condition. Currently, IDD treatment primarily focuses on symptom management and does not achieve a definitive cure. The cartilage endplate (CEP), a crucial nutrient-supplying tissue of the intervertebral disc, plays a pivotal role in disc degeneration. This review examines the mechanisms underlying CEP degeneration, summarizing recent advancements in understanding the structure and function of CEP, the involvement of various signaling pathways, and the roles of cartilage endplate stem cells (CESCs) and exosomes (Exos) in this process. The aim of this review is to provide a comprehensive reference for future research on CEP. Despite progress in understanding the role of CEP in IDD, the mechanisms underlying CEP degeneration remain incompletely elucidated. Future research poses significant challenges, necessitating further investigations to elucidate the complexities of CEP.</p></div>","PeriodicalId":9669,"journal":{"name":"Cell Biochemistry and Function","volume":"42 7","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Panax notoginseng Saponins Ameliorate Gamma Radiation-Mediated Damages in Human Peripheral Blood Monocytes and Swiss Albino Mice","authors":"Ming-Yu Yang, Xing-Hua Zhao","doi":"10.1002/cbf.4115","DOIUrl":"https://doi.org/10.1002/cbf.4115","url":null,"abstract":"<div>\u0000 \u0000 <p>In this study, the protective effects of <i>Panax notoginseng</i> saponins (PNS) against gamma radiation-induced DNA damage and associated physiological alterations in Swiss albino mice were investigated. Exposure to gamma radiation led to a dose-dependent increase in cytokinesis-blocked micronuclei (CBMN) double-strand DNA breaks (DSBs), dicentric aberrations (DC), formation in peripheral blood mononuclear cells. However, pretreatment with PNS at concentrations of 1, 5, and 10 µg/mL significantly attenuated the frequencies of DC and CBMN in a concentration-dependent manner. PNS administration before radiation exposure also reduced radiation-induced DSBs in BL, indicating protection against reactive oxygen species generation and DNA damage. Notably, pretreatment with PNS at 10 µg/mL prevented the overexpression of γ-H2AX, proteins associated with DNA damage response, in irradiated mice. In addition, in vivo studies showed intraperitoneal administration of PNS (25 mg/kg body weight) for 1 h before radiation exposure mitigated lipid peroxidation levels and restored antioxidant status, countering oxidative damage induced by gamma radiation. Furthermore, PNS pretreatment reversed the decrease in hemoglobin (Hb) content, white blood cell count, and red blood cell count in irradiated mice, indicating preservation of hematological parameters. Overall, PNS demonstrated an anticlastogenic effect by modulating radiation-induced DSBs and preventing oxidative damage, thus highlighting its potential as a protective agent against radiation-induced DNA damage and associated physiological alterations. Clinically, PNS will be beneficial for cancer patients undergoing radiotherapy, but their pharmacological properties and toxicity profiles need to be studied.</p></div>","PeriodicalId":9669,"journal":{"name":"Cell Biochemistry and Function","volume":"42 7","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Regulatory Mechanism of Autophagy in Premature Ovarian Failure","authors":"Ziwen Ding, Genbao Shao, Mingyang Li","doi":"10.1002/cbf.4122","DOIUrl":"https://doi.org/10.1002/cbf.4122","url":null,"abstract":"<div>\u0000 \u0000 <p>Premature ovarian failure (POF) is intricately linked to cellular fates such as senescence, apoptosis, and impaired granulosa cell (GC) differentiation, each of which contributes to ovarian dysfunction and follicular depletion. Autophagy is essential in preventing POF by maintaining cellular homeostasis through the degradation and recycling of damaged organelles and proteins, thereby preserving ovarian function and preventing follicular depletion. Recent studies have revealed that the targeted regulation and disruption of autophagy through various molecular mechanisms ultimately lead to the pathogenesis of POF. In this review, we provide a comprehensive analysis of the disruption in regulatory mechanisms of autophagy contributing to POF. Specifically, we elucidate the molecular mechanisms that can be targeted to restore autophagy homeostasis, offering therapeutic potential for the treatment of POF.</p></div>","PeriodicalId":9669,"journal":{"name":"Cell Biochemistry and Function","volume":"42 7","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bruna Pinheiro Pereira, Alessandra Oliveira Silva, Wanessa Mayumi Carvalho Awata, Gustavo Félix Pimenta, Jéssyca Milene Ribeiro, Carolina Aparecida de Faria Almeida, Carla Renata Kitanishi Antonietto, Luis Felipe Cunha dos Reis, Alessandra Esteves, Larissa Helena Lobo Torres, Fernanda Borges de Araújo Paula, Sílvia Graciela Ruginsk, Carlos Renato Tirapelli, Ellen Rizzi, Carla Speroni Ceron
{"title":"Curcumin Prevents Renal Damage of l-NAME Induced Hypertension in by Reducing MMP-2 and MMP-9","authors":"Bruna Pinheiro Pereira, Alessandra Oliveira Silva, Wanessa Mayumi Carvalho Awata, Gustavo Félix Pimenta, Jéssyca Milene Ribeiro, Carolina Aparecida de Faria Almeida, Carla Renata Kitanishi Antonietto, Luis Felipe Cunha dos Reis, Alessandra Esteves, Larissa Helena Lobo Torres, Fernanda Borges de Araújo Paula, Sílvia Graciela Ruginsk, Carlos Renato Tirapelli, Ellen Rizzi, Carla Speroni Ceron","doi":"10.1002/cbf.4119","DOIUrl":"10.1002/cbf.4119","url":null,"abstract":"<div>\u0000 \u0000 <p>In the present study, we investigated whether curcumin administration would interfere with the main renal features of <span>l</span>-NAME-induced hypertension model. For this purpose, we conducted both in vitro and in vivo experiments to evaluate renal indicators of inflammation, oxidative stress, and metalloproteinases (MMPs) expression/activity. Hypertension was induced by <span>l</span>-NAME (70 mg/kg/day), and Wistar rats from both control and hypertensive groups were treated with curcumin (50 or 100 mg/kg/day; gavage) or vehicle for 14 days. Blood and kidneys were collected to determine serum creatinine levels, histological alterations, oxidative stress, MMPs expression and activity, and ED1 expression. <span>l</span>-NAME increased blood pressure, but both doses of curcumin treatment reduced these values. <span>l</span>-NAME treatment increased creatinine levels, glomeruli area, Bowman's space, kidney MMP-2 activity, as well as MMP-9 and ED1 expression, and reduced the number of glomeruli. Curcumin treatment prevented the increase in creatinine levels, MMP-2 activity, and reduced MMP-2, MMP-9, ED1, and superoxide levels, as well as increased superoxide dismutase activity and partially prevented glomeruli alterations. Moreover, curcumin directly inhibited MMP-2 activity in vitro. Thus, our main findings demonstrate that curcumin reduced <span>l</span>-NAME-induced hypertension and renal glomerular alterations, inhibited MMP-2 and MMP-9 expression/activity, and reduced oxidative stress and inflammatory processes, which may indirectly impact hypertension-induced renal outcomes.</p></div>","PeriodicalId":9669,"journal":{"name":"Cell Biochemistry and Function","volume":"42 7","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emily C. Wyatt, Lindsey R. VanDerStad, Norah E. Cook, Macey R. McGovern, Toheed Zaman, Pamela M. Lundin, Roger A. Vaughan
{"title":"Valsartan Rescues Suppressed Mitochondrial Metabolism during Insulin Resistance in C2C12 Myotubes","authors":"Emily C. Wyatt, Lindsey R. VanDerStad, Norah E. Cook, Macey R. McGovern, Toheed Zaman, Pamela M. Lundin, Roger A. Vaughan","doi":"10.1002/cbf.4117","DOIUrl":"10.1002/cbf.4117","url":null,"abstract":"<p>Elevated circulating branched-chain amino acids (BCAA) have been linked with the severity of insulin resistance across numerous populations, implicating heightened BCAA metabolism as a potential therapy for insulin resistance. Recently, the angiotensin II type 1 receptor (AT1R) inhibitor Valsartan (VAL) was identified as a potent inhibitor of branched-chain alpha-keto acid dehydrogenase kinase (BCKDK), a negative regulator of BCAA metabolism. This work investigated the effect of VAL on myotube metabolism and insulin sensitivity under both insulin sensitive and insulin resistant conditions. C2C12 myotubes were treated with or without VAL at 8 µM for 24 h, both with and without hyperinsulinemic-induced insulin resistance. Oxygen consumption and extracellular acidification were used to measure mitochondrial and glycolytic metabolism, respectively. Gene expression was assessed via qRT-PCR, and insulin sensitivity was assessed via Western blot. Insulin resistance significantly reduced both basal and peak mitochondrial function which were rescued to control levels by concurrent VAL. Changes in mitochondrial function occurred without substantial changes in mitochondrial content or related gene expression. Insulin sensitivity and glycolytic metabolism were unaffected by VAL, as was lipogenic signaling and lipid content. Additionally, both VAL and insulin resistance depressed <i>Bckdha</i> expression. Interestingly, an interaction effect was observed for extracellular isoleucine, valine, and total BCAA (but not leucine), suggesting VAL may alter BCAA utilization in an insulin sensitivity-dependent manner. Insulin resistance appears to suppress mitochondrial function in a myotube model which can be rescued by VAL. Further research will be required to explore the implications of these findings in more complex models.</p>","PeriodicalId":9669,"journal":{"name":"Cell Biochemistry and Function","volume":"42 7","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cbf.4117","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142145277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hepatocellular Interactions of Potential Nutraceuticals in the Management of Inflammatory NAFLD","authors":"Devaraj Ezhilarasan, Kulanthaivel Langeswaran","doi":"10.1002/cbf.4112","DOIUrl":"10.1002/cbf.4112","url":null,"abstract":"<div>\u0000 \u0000 <p>Numerous studies highlight the potential of natural antioxidants, such as those found in foods and plants, to prevent or treat nonalcoholic fatty liver disease (NAFLD). Inflammation is a key factor in the progression from high-fat diet-induced NAFLD to nonalcoholic steatohepatitis (NASH). Injured liver cells and immune cells release inflammatory cytokines, activating hepatic stellate cells. These cells acquire a profibrogenic phenotype, leading to extracellular matrix accumulation and fibrosis. Persistent fibrosis can progress to cirrhosis. Fatty infiltration, oxidative stress, and inflammation exacerbate fatty liver diseases. Thus, many plant-derived antioxidants, like silymarin, silibinin, curcumin, resveratrol, berberine, and quercetin, have been extensively studied in experimental models and clinical patients with NAFLD. Experimentally, these compounds have shown beneficial effects in reducing lipid accumulation, oxidative stress, and inflammatory markers by modulating the ERK, NF-κB, AMPKα, and PPARγ pathways. They also help decrease metabolic endotoxemia, intestinal permeability, and gut inflammation. Clinically, silymarin and silibinin have been found to reduce transaminase levels, while resveratrol and curcumin help alleviate inflammation in NAFLD patients. However, these phytocompounds exhibit poor water solubility, leading to low oral bioavailability and hindering their biological efficacy. Additionally, inconclusive clinical results highlight the need for further trials with larger populations, longer durations, and standardized protocols.</p></div>","PeriodicalId":9669,"journal":{"name":"Cell Biochemistry and Function","volume":"42 7","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142139420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}