Cell stem cellPub Date : 2024-06-21DOI: 10.1016/j.stem.2024.05.011
Shira Landau, Yimu Zhao, Homaira Hamidzada, Gregory M. Kent, Sargol Okhovatian, Rick Xing Ze Lu, Chuan Liu, Karl T. Wagner, Krisco Cheung, Sarah A. Shawky, Daniel Vosoughi, Erika Leigh Beroncal, Ian Fernandes, Carolyn L. Cummins, Ana C. Andreazza, Gordon M. Keller, Slava Epelman, Milica Radisic
{"title":"Primitive macrophages enable long-term vascularization of human heart-on-a-chip platforms","authors":"Shira Landau, Yimu Zhao, Homaira Hamidzada, Gregory M. Kent, Sargol Okhovatian, Rick Xing Ze Lu, Chuan Liu, Karl T. Wagner, Krisco Cheung, Sarah A. Shawky, Daniel Vosoughi, Erika Leigh Beroncal, Ian Fernandes, Carolyn L. Cummins, Ana C. Andreazza, Gordon M. Keller, Slava Epelman, Milica Radisic","doi":"10.1016/j.stem.2024.05.011","DOIUrl":"https://doi.org/10.1016/j.stem.2024.05.011","url":null,"abstract":"<p>The intricate anatomical structure and high cellular density of the myocardium complicate the bioengineering of perfusable vascular networks within cardiac tissues. <em>In vivo</em> neonatal studies highlight the key role of resident cardiac macrophages in post-injury regeneration and angiogenesis. Here, we integrate human pluripotent stem-cell-derived primitive yolk-sac-like macrophages within vascularized heart-on-chip platforms. Macrophage incorporation profoundly impacted the functionality and perfusability of microvascularized cardiac tissues up to 2 weeks of culture. Macrophages mitigated tissue cytotoxicity and the release of cell-free mitochondrial DNA (mtDNA), while upregulating the secretion of pro-angiogenic, matrix remodeling, and cardioprotective cytokines. Bulk RNA sequencing (RNA-seq) revealed an upregulation of cardiac maturation and angiogenesis genes. Further, single-nuclei RNA sequencing (snRNA-seq) and secretome data suggest that macrophages may prime stromal cells for vascular development by inducing insulin like growth factor binding protein 7 (IGFBP7) and hepatocyte growth factor (HGF) expression. Our results underscore the vital role of primitive macrophages in the long-term vascularization of cardiac tissues, offering insights for therapy and advancing heart-on-a-chip technologies.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"7 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141436026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell stem cellPub Date : 2024-06-13DOI: 10.1016/j.stem.2024.05.007
Olga Mitrofanova, Mikhail Nikolaev, Quan Xu, Nicolas Broguiere, Irineja Cubela, J. Gray Camp, Michael Bscheider, Matthias P. Lutolf
{"title":"Bioengineered human colon organoids with in vivo-like cellular complexity and function","authors":"Olga Mitrofanova, Mikhail Nikolaev, Quan Xu, Nicolas Broguiere, Irineja Cubela, J. Gray Camp, Michael Bscheider, Matthias P. Lutolf","doi":"10.1016/j.stem.2024.05.007","DOIUrl":"https://doi.org/10.1016/j.stem.2024.05.007","url":null,"abstract":"<p>Organoids and organs-on-a-chip have emerged as powerful tools for modeling human gut physiology and disease <em>in vitro</em>. Although physiologically relevant, these systems often lack the environmental milieu, spatial organization, cell type diversity, and maturity necessary for mimicking human intestinal mucosa. To instead generate models closely resembling <em>in vivo</em> tissue, we herein integrated organoid and organ-on-a-chip technology to develop an advanced human organoid model, called “mini-colons.” By employing an asymmetric stimulation with growth factors, we greatly enhanced tissue longevity and replicated <em>in vivo</em>-like diversity and patterning of proliferative and differentiated cell types. Mini-colons contain abundant mucus-producing goblet cells and, signifying mini-colon maturation, single-cell RNA sequencing reveals emerging mature and functional colonocytes. This methodology is expanded to generate microtissues from the small intestine and incorporate additional microenvironmental components. Finally, our bioengineered organoids provide a precise platform to systematically study human gut physiology and pathology, and a reliable preclinical model for drug safety assessment.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"70 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell stem cellPub Date : 2024-06-06DOI: 10.1016/j.stem.2024.05.002
Mehek Ningoo, Miguel Fribourg
{"title":"From stem cells to regulatory T cells: A tale of plasticity","authors":"Mehek Ningoo, Miguel Fribourg","doi":"10.1016/j.stem.2024.05.002","DOIUrl":"https://doi.org/10.1016/j.stem.2024.05.002","url":null,"abstract":"<p>In this issue<em>,</em> Yano et al.<span><sup>1</sup></span> present a method to obtain suppressive regulatory T (Treg) cells from human induced pluripotent stem cells (hiPSCs). This approach has the potential to address the low Treg cell yields of current <em>ex vivo</em> Treg cell expansion and induction protocols, an unmet challenge for autologous Treg cell treatments.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"9 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141265013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell stem cellPub Date : 2024-06-06DOI: 10.1016/j.stem.2024.05.001
Christos Karampelias, Heiko Lickert
{"title":"Greasing the machinery toward maturation of stem cell-derived β cells","authors":"Christos Karampelias, Heiko Lickert","doi":"10.1016/j.stem.2024.05.001","DOIUrl":"https://doi.org/10.1016/j.stem.2024.05.001","url":null,"abstract":"<p>Getting mature and functional stem cell-derived, insulin-producing β cells is an important step for disease modeling, drug screening, and cell replacement therapy. In this issue, Hua et al.<span><sup>1</sup></span> used single-cell multiomics analysis coupled with chemical screening to identify a crucial role for ceramides in generating mature stem cell-derived β cells.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"34 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141265056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell stem cellPub Date : 2024-06-06DOI: 10.1016/j.stem.2024.05.006
Daniela Paasch, Nico Lachmann
{"title":"CAR macrophages tuning the immune symphony of anti-cancer therapies","authors":"Daniela Paasch, Nico Lachmann","doi":"10.1016/j.stem.2024.05.006","DOIUrl":"https://doi.org/10.1016/j.stem.2024.05.006","url":null,"abstract":"<p>Chimeric antigen receptor (CAR) macrophages have broadened the landscape of anti-cancer immunotherapies to combat solid malignancies. Shah et al. introduce CARs to facilitate a CAR macrophage therapy, which aims to recruit and activate T/natural killer cells, further strengthening the overall immune response to decrease pancreatic cancer burden and metastatic spreading.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"34 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141265097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Human iPSC-derived CD4+ Treg-like cells engineered with chimeric antigen receptors control GvHD in a xenograft model","authors":"Hisashi Yano, Keiko Koga, Takayuki Sato, Tokuyuki Shinohara, Shoichi Iriguchi, Atsushi Matsuda, Kazuki Nakazono, Maki Shioiri, Yasuyuki Miyake, Yoshiaki Kassai, Hitoshi Kiyoi, Shin Kaneko","doi":"10.1016/j.stem.2024.05.004","DOIUrl":"https://doi.org/10.1016/j.stem.2024.05.004","url":null,"abstract":"<p>CD4<sup>+</sup> T cells induced from human iPSCs (iCD4<sup>+</sup> T cells) offer a therapeutic opportunity for overcoming immune pathologies arising from hematopoietic stem cell transplantation. However, most iCD4<sup>+</sup> T cells are conventional helper T cells, which secrete inflammatory cytokines. We induced high-level expression of FOXP3, a master transcription factor of regulatory T cells, in iCD4<sup>+</sup> T cells. Human iPSC-derived, FOXP3-induced CD4<sup>+</sup> T (iCD4<sup>+</sup> Treg-like) cells did not secrete inflammatory cytokines upon activation. Moreover, they showed demethylation of the Treg-specific demethylation region, suggesting successful conversion to immunosuppressive iCD4<sup>+</sup> Treg-like cells. We further assessed these iCD4<sup>+</sup> Treg-like cells for CAR-mediated immunosuppressive ability. HLA-A2 CAR-transduced iCD4<sup>+</sup> Treg-like cells inhibited CD8<sup>+</sup> cytotoxic T cell (CTL) division in a mixed lymphocyte reaction assay with A2<sup>+</sup> allogeneic CTLs and suppressed xenogeneic graft-versus-host disease (GVHD) in NSG mice treated with A2<sup>+</sup> human PBMCs. In most cases, these cells suppressed the xenogeneic GvHD progression as much as natural CD25<sup>+</sup>CD127<sup>−</sup> Tregs did.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"34 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141265107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell stem cellPub Date : 2024-06-05DOI: 10.1016/j.stem.2024.05.005
Yongshun Lin, Noriko Sato, Sogun Hong, Kenta Nakamura, Elisa A. Ferrante, Zu Xi Yu, Marcus Y. Chen, Daisy S. Nakamura, Xiulan Yang, Randall R. Clevenger, Timothy J. Hunt, Joni L. Taylor, Kenneth R. Jeffries, Karen J. Keeran, Lauren E. Neidig, Atul Mehta, Robin Schwartzbeck, Shiqin Judy Yu, Conor Kelly, Keron Navarengom, Cynthia E. Dunbar
{"title":"Long-term engraftment and maturation of autologous iPSC-derived cardiomyocytes in two rhesus macaques","authors":"Yongshun Lin, Noriko Sato, Sogun Hong, Kenta Nakamura, Elisa A. Ferrante, Zu Xi Yu, Marcus Y. Chen, Daisy S. Nakamura, Xiulan Yang, Randall R. Clevenger, Timothy J. Hunt, Joni L. Taylor, Kenneth R. Jeffries, Karen J. Keeran, Lauren E. Neidig, Atul Mehta, Robin Schwartzbeck, Shiqin Judy Yu, Conor Kelly, Keron Navarengom, Cynthia E. Dunbar","doi":"10.1016/j.stem.2024.05.005","DOIUrl":"https://doi.org/10.1016/j.stem.2024.05.005","url":null,"abstract":"<p>Cellular therapies with cardiomyocytes produced from induced pluripotent stem cells (iPSC-CMs) offer a potential route to cardiac regeneration as a treatment for chronic ischemic heart disease. Here, we report successful long-term engraftment and <em>in vivo</em> maturation of autologous iPSC-CMs in two rhesus macaques with small, subclinical chronic myocardial infarctions, all without immunosuppression. Longitudinal positron emission tomography imaging using the sodium/iodide symporter (NIS) reporter gene revealed stable grafts for over 6 and 12 months, with no teratoma formation. Histological analyses suggested capability of the transplanted iPSC-CMs to mature and integrate with endogenous myocardium, with no sign of immune cell infiltration or rejection. By contrast, allogeneic iPSC-CMs were rejected within 8 weeks of transplantation. This study provides the longest-term safety and maturation data to date in any large animal model, addresses concerns regarding neoantigen immunoreactivity of autologous iPSC therapies, and suggests that autologous iPSC-CMs would similarly engraft and mature in human hearts.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"1 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141252003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell stem cellPub Date : 2024-05-31DOI: 10.1016/j.stem.2024.05.003
Anish Dattani, Elena Corujo-Simon, Arthur Radley, Tiam Heydari, Yasaman Taheriabkenar, Francesca Carlisle, Simeng Lin, Corin Liddle, Jonathan Mill, Peter W. Zandstra, Jennifer Nichols, Ge Guo
{"title":"Naive pluripotent stem cell-based models capture FGF-dependent human hypoblast lineage specification","authors":"Anish Dattani, Elena Corujo-Simon, Arthur Radley, Tiam Heydari, Yasaman Taheriabkenar, Francesca Carlisle, Simeng Lin, Corin Liddle, Jonathan Mill, Peter W. Zandstra, Jennifer Nichols, Ge Guo","doi":"10.1016/j.stem.2024.05.003","DOIUrl":"https://doi.org/10.1016/j.stem.2024.05.003","url":null,"abstract":"<p>The hypoblast is an essential extraembryonic tissue set aside within the inner cell mass in the blastocyst. Research with human embryos is challenging. Thus, stem cell models that reproduce hypoblast differentiation provide valuable alternatives. We show here that human naive pluripotent stem cell (PSC) to hypoblast differentiation proceeds via reversion to a transitional ICM-like state from which the hypoblast emerges in concordance with the trajectory in human blastocysts. We identified a window when fibroblast growth factor (FGF) signaling is critical for hypoblast specification. Revisiting FGF signaling in human embryos revealed that inhibition in the early blastocyst suppresses hypoblast formation. <em>In vitro</em>, the induction of hypoblast is synergistically enhanced by limiting trophectoderm and epiblast fates. This finding revises previous reports and establishes a conservation in lineage specification between mice and humans. Overall, this study demonstrates the utility of human naive PSC-based models in elucidating the mechanistic features of early human embryogenesis.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"41 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141185424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SDHAF1 confers metabolic resilience to aging hematopoietic stem cells by promoting mitochondrial ATP production","authors":"Shintaro Watanuki, Hiroshi Kobayashi, Yuki Sugiura, Masamichi Yamamoto, Daiki Karigane, Kohei Shiroshita, Yuriko Sorimachi, Takayuki Morikawa, Shinya Fujita, Kotaro Shide, Miho Haraguchi, Shinpei Tamaki, Takumi Mikawa, Hiroshi Kondoh, Hiroyasu Nakano, Kenta Sumiyama, Go Nagamatsu, Nobuhito Goda, Shinichiro Okamoto, Ayako Nakamura-Ishizu, Keiyo Takubo","doi":"10.1016/j.stem.2024.04.023","DOIUrl":"https://doi.org/10.1016/j.stem.2024.04.023","url":null,"abstract":"<p>Aging generally predisposes stem cells to functional decline, impairing tissue homeostasis. Here, we report that hematopoietic stem cells (HSCs) acquire metabolic resilience that promotes cell survival. High-resolution real-time ATP analysis with glucose tracing and metabolic flux analysis revealed that old HSCs reprogram their metabolism to activate the pentose phosphate pathway (PPP), becoming more resistant to oxidative stress and less dependent on glycolytic ATP production at steady state. As a result, old HSCs can survive without glycolysis, adapting to the physiological cytokine environment in bone marrow. Mechanistically, old HSCs enhance mitochondrial complex II metabolism during stress to promote ATP production. Furthermore, increased succinate dehydrogenase assembly factor 1 (SDHAF1) in old HSCs, induced by physiological low-concentration thrombopoietin (TPO) exposure, enables rapid mitochondrial ATP production upon metabolic stress, thereby improving survival. This study provides insight into the acquisition of resilience through metabolic reprogramming in old HSCs and its molecular basis to ameliorate age-related hematopoietic abnormalities.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"15 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141069209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}