{"title":"Advances in the molecular biology of the solitary fibrous tumor and potential impact on clinical applications.","authors":"Chongmin Ren, Gina D'Amato, Francis J Hornicek, Hao Tao, Zhenfeng Duan","doi":"10.1007/s10555-024-10204-8","DOIUrl":"10.1007/s10555-024-10204-8","url":null,"abstract":"<p><p>Solitary fibrous tumor (SFT) is a rare fibroblastic mesenchymal neoplasm. The current classification has merged SFT and hemangiopericytoma (HPC) into the same tumor entity, while the risk stratification models have been developed to compensate for clinical prediction. Typically, slow-growing and asymptomatic, SFT can occur in various anatomical sites, most commonly in the pleura. Histologically, SFT consists of spindle to oval cells with minimal patterned growth, surrounded by stromal collagen and unique vascular patterns. Molecularly, SFT is defined by the fusion of NGFI-A-binding protein 2 (NAB2) and signal transducer and activator of transcription 6 (STAT6) genes as NAB2-STAT6. This fusion transforms NAB2 into a transcriptional activator, activating early growth response 1 (EGR1) and contributing to SFT pathogenesis and development. There are several fusion variants of NAB2-STAT6 in tumor tissues, with the most frequent ones being NAB2ex4-STAT6ex2 and NAB2ex6-STAT6ex16/ex17. Diagnostic methods play a crucial role in SFT clinical practice and basic research, including RT-PCR, next-generation sequencing (NGS), FISH, immunohistochemistry (IHC), and Western blot analysis, each with distinct capabilities and limitations. Traditional treatment strategies of SFT encompass surgical resection, radiation therapy, and chemotherapy, while emerging management regimes include antiangiogenic agents, immunotherapy, RNA-targeting technologies, and potential targeted drugs. This review provides an update on SFT's clinical and molecular aspects, diagnostic methods, and potential therapies.</p>","PeriodicalId":9489,"journal":{"name":"Cancer and Metastasis Reviews","volume":" ","pages":"1337-1352"},"PeriodicalIF":4.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554739/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141906009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sumayyah M Q Ahmed, Jayaprakash Sasikumar, Suparna Laha, Shankar Prasad Das
{"title":"Multifaceted role of the DNA replication protein MCM10 in maintaining genome stability and its implication in human diseases.","authors":"Sumayyah M Q Ahmed, Jayaprakash Sasikumar, Suparna Laha, Shankar Prasad Das","doi":"10.1007/s10555-024-10209-3","DOIUrl":"10.1007/s10555-024-10209-3","url":null,"abstract":"<p><p>MCM10 plays a vital role in genome duplication and is crucial for DNA replication initiation, elongation, and termination. It coordinates several proteins to assemble at the fork, form a functional replisome, trigger origin unwinding, and stabilize the replication bubble. MCM10 overexpression is associated with increased aggressiveness in breast, cervical, and several other cancers. Disruption of MCM10 leads to altered replication timing associated with initiation site gains and losses accompanied by genome instability. Knockdown of MCM10 affects the proliferation and migration of cancer cells, manifested by DNA damage and replication fork arrest, and has recently been shown to be associated with clinical conditions like CNKD and RCM. Loss of MCM10 function is associated with impaired telomerase activity, leading to the accumulation of abnormal replication forks and compromised telomere length. MCM10 interacts with histones, aids in nucleosome assembly, binds BRCA2 to maintain genome integrity during DNA damage, prevents lesion skipping, and inhibits PRIMPOL-mediated repriming. It also interacts with the fork reversal enzyme SMARCAL1 and inhibits fork regression. Additionally, MCM10 undergoes several post-translational modifications and contributes to transcriptional silencing by interacting with the SIR proteins. This review explores the mechanism associated with MCM10's multifaceted role in DNA replication initiation, chromatin organization, transcriptional silencing, replication stress, fork stability, telomere length maintenance, and DNA damage response. Finally, we discuss the role of MCM10 in the early detection of cancer, its prognostic significance, and its potential use in therapeutics for cancer treatment.</p>","PeriodicalId":9489,"journal":{"name":"Cancer and Metastasis Reviews","volume":" ","pages":"1353-1371"},"PeriodicalIF":7.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142139388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jyoti B Kaushal, Pratima Raut, Sakthivel Muniyan, Jawed A Siddiqui, Zahraa W Alsafwani, Parthasarathy Seshacharyulu, Sujit S Nair, Ashutosh K Tewari, Surinder K Batra
{"title":"Racial disparity in prostate cancer: an outlook in genetic and molecular landscape.","authors":"Jyoti B Kaushal, Pratima Raut, Sakthivel Muniyan, Jawed A Siddiqui, Zahraa W Alsafwani, Parthasarathy Seshacharyulu, Sujit S Nair, Ashutosh K Tewari, Surinder K Batra","doi":"10.1007/s10555-024-10193-8","DOIUrl":"10.1007/s10555-024-10193-8","url":null,"abstract":"<p><p>Prostate cancer (PCa) incidence, morbidity, and mortality rates are significantly impacted by racial disparities. Despite innovative therapeutic approaches and advancements in prevention, men of African American (AA) ancestry are at a higher risk of developing PCa and have a more aggressive and metastatic form of the disease at the time of initial PCa diagnosis than other races. Research on PCa has underlined the biological and molecular basis of racial disparity and emphasized the genetic aspect as the fundamental component of racial inequality. Furthermore, the lower enrollment rate, limited access to national-level cancer facilities, and deferred treatment of AA men and other minorities are hurdles in improving the outcomes of PCa patients. This review provides the most up-to-date information on various biological and molecular contributing factors, such as the single nucleotide polymorphisms (SNPs), mutational spectrum, altered chromosomal loci, differential gene expression, transcriptome analysis, epigenetic factors, tumor microenvironment (TME), and immune modulation of PCa racial disparities. This review also highlights future research avenues to explore the underlying biological factors contributing to PCa disparities, particularly in men of African ancestry.</p>","PeriodicalId":9489,"journal":{"name":"Cancer and Metastasis Reviews","volume":" ","pages":"1233-1255"},"PeriodicalIF":7.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560487/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141431487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Classification of anticancer drugs: an update with FDA- and EMA-approved drugs.","authors":"Lorena Ostios-Garcia, Daniel Martínez Pérez, Beatriz Castelo, Noelia Hernández Herradón, Pilar Zamora, Jaime Feliu, Enrique Espinosa","doi":"10.1007/s10555-024-10188-5","DOIUrl":"10.1007/s10555-024-10188-5","url":null,"abstract":"<p><p>Anticancer systemic therapy comprises a complex and growing group of drugs. Some of the new agents with novel mechanisms of action that have appeared are difficult to fit in the groups of classical chemotherapy, hormones, tyrosine-kinase inhibitors, and monoclonal antibodies. We propose a classification based on two levels of information: the site of action and the mechanism of action. Regarding the former, drugs can exert their action in the tumor cell, the tumor vasculature, the immune system, or the endocrine system. The mechanism of action refers to the molecular target.</p>","PeriodicalId":9489,"journal":{"name":"Cancer and Metastasis Reviews","volume":" ","pages":"1561-1571"},"PeriodicalIF":7.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554936/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141533686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Failure to progress: breast and prostate cancer cell lines in developing targeted therapies.","authors":"Chelsi James, Akeem Whitehead, Jasmine T Plummer, Rory Thompson, Simone Badal","doi":"10.1007/s10555-024-10202-w","DOIUrl":"10.1007/s10555-024-10202-w","url":null,"abstract":"<p><p>Developing anticancer drugs from preclinical to clinical takes approximately a decade in a cutting-edge biomedical lab and still 97% of most fail at clinical trials. Cell line usage is critical in expediting the advancement of anticancer therapies. Yet developing appropriate cell lines has been challenging and overcoming these obstacles whilst implementing a systematic approach of utilizing 3D models that recapitulate the tumour microenvironment is prudent. Using a robust and continuous supply of cell lines representing all ethnic groups from all locales is necessary to capture the evolving tumour landscape in culture. Next, the conversion of these models to systems on a chip that can by way of high throughput cytotoxic assays identify drug leads for clinical trials should fast-track drug development while markedly improving success rates. In this review, we describe the challenges that have hindered the progression of cell line models over seven decades and methods to overcome this. We outline the gaps in breast and prostate cancer cell line pathology and racial representation alongside their involvement in relevant drug development.</p>","PeriodicalId":9489,"journal":{"name":"Cancer and Metastasis Reviews","volume":" ","pages":"1529-1548"},"PeriodicalIF":7.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141765550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carina Strell, Elisabet Rodríguez-Tomàs, Arne Östman
{"title":"Functional and clinical roles of stromal PDGF receptors in tumor biology.","authors":"Carina Strell, Elisabet Rodríguez-Tomàs, Arne Östman","doi":"10.1007/s10555-024-10194-7","DOIUrl":"10.1007/s10555-024-10194-7","url":null,"abstract":"<p><p>PDGF receptors play pivotal roles in both developmental and physiological processes through the regulation of mesenchymal cells involved in paracrine instructive interactions with epithelial or endothelial cells. Tumor biology studies, alongside analyses of patient tissue samples, provide strong indications that the PDGF signaling pathways are also critical in various types of human cancer. This review summarizes experimental findings and correlative studies, which have explored the biological mechanisms and clinical relevance of PDGFRs in mesenchymal cells of the tumor microenvironment. Collectively, these studies support the overall concept that the PDGF system is a critical regulator of tumor growth, metastasis, and drug efficacy, suggesting yet unexploited targeting opportunities. The inter-patient variability in stromal PDGFR expression, as being linked to prognosis and treatment responses, not only indicates the need for stratified approaches in upcoming therapeutic investigations but also implies the potential for the development of PDGFRs as biomarkers of clinical utility, interestingly also in settings outside PDGFR-directed treatments.</p>","PeriodicalId":9489,"journal":{"name":"Cancer and Metastasis Reviews","volume":" ","pages":"1593-1609"},"PeriodicalIF":4.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554757/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141558157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patrizia Limonta, Sara Marchesi, Gaia Giannitti, Lavinia Casati, Fabrizio Fontana
{"title":"The biological function of extracellular vesicles in prostate cancer and their clinical application as diagnostic and prognostic biomarkers.","authors":"Patrizia Limonta, Sara Marchesi, Gaia Giannitti, Lavinia Casati, Fabrizio Fontana","doi":"10.1007/s10555-024-10210-w","DOIUrl":"10.1007/s10555-024-10210-w","url":null,"abstract":"<p><p>Prostate cancer (PCa) is one of the most commonly diagnosed malignancies and main causes of cancer-related deaths worldwide. It is characterized by high heterogeneity, ranging from slow-growing tumor to metastatic disease. Since both therapy selection and outcome strongly rely on appropriate patient stratification, it is crucial to differentiate benign from more aggressive conditions using new and improved diagnostic and prognostic biomarkers. Extracellular vesicles (EVs) are membrane-coated particles carrying a specific biological cargo composed of nucleic acids, proteins, and metabolites. Here, we provide an overview of the role of EVs in PCa, focusing on both their biological function and clinical value. Specifically, we summarize the oncogenic role of EVs in mediating the interactions with PCa microenvironment as well as the horizontal transfer of metastatic traits and drug resistance between PCa cells. Furthermore, we discuss the potential usage of EVs as innovative tools for PCa diagnosis and prognosis.</p>","PeriodicalId":9489,"journal":{"name":"Cancer and Metastasis Reviews","volume":" ","pages":"1611-1627"},"PeriodicalIF":4.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554767/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142307103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jessica Permain, Barry Hock, Timothy Eglinton, Rachel Purcell
{"title":"Functional links between the microbiome and the molecular pathways of colorectal carcinogenesis.","authors":"Jessica Permain, Barry Hock, Timothy Eglinton, Rachel Purcell","doi":"10.1007/s10555-024-10215-5","DOIUrl":"10.1007/s10555-024-10215-5","url":null,"abstract":"<p><p>Colorectal cancer (CRC) is a common cancer, with a concerning rise in early-onset CRC cases, signalling a shift in disease epidemiology. Whilst our understanding of the molecular underpinnings of CRC has expanded, the complexities underlying its initiation remain elusive, with emerging evidence implicating the microbiome in CRC pathogenesis. This review synthesizes current knowledge on the intricate interplay between the microbiome, tumour microenvironment (TME), and molecular pathways driving CRC carcinogenesis. Recent studies have reported how the microbiome may modulate the TME and tumour immune responses, consequently influencing cancer progression, and whilst specific bacteria have been linked with CRC, the underlying mechanisms remains poorly understood. By elucidating the functional links between microbial landscapes and carcinogenesis pathways, this review offers insights into how bacteria orchestrate diverse pathways of CRC development, shedding light on potential therapeutic targets and personalized intervention strategies.</p>","PeriodicalId":9489,"journal":{"name":"Cancer and Metastasis Reviews","volume":" ","pages":"1463-1474"},"PeriodicalIF":4.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554747/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142342198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fanglu Chen, Yucheng Xue, Wenkan Zhang, Hao Zhou, Zhiyi Zhou, Tao Chen, Eloy YinWang, Hengyuan Li, Zhaoming Ye, Junjie Gao, Shengdong Wang
{"title":"The role of mitochondria in tumor metastasis and advances in mitochondria-targeted cancer therapy.","authors":"Fanglu Chen, Yucheng Xue, Wenkan Zhang, Hao Zhou, Zhiyi Zhou, Tao Chen, Eloy YinWang, Hengyuan Li, Zhaoming Ye, Junjie Gao, Shengdong Wang","doi":"10.1007/s10555-024-10211-9","DOIUrl":"10.1007/s10555-024-10211-9","url":null,"abstract":"<p><p>Mitochondria are central actors in diverse physiological phenomena ranging from energy metabolism to stress signaling and immune modulation. Accumulating scientific evidence points to the critical involvement of specific mitochondrial-associated events, including mitochondrial quality control, intercellular mitochondrial transfer, and mitochondrial genetics, in potentiating the metastatic cascade of neoplastic cells. Furthermore, numerous recent studies have consistently emphasized the highly significant role mitochondria play in coordinating the regulation of tumor-infiltrating immune cells and immunotherapeutic interventions. This review provides a comprehensive and rigorous scholarly investigation of this subject matter, exploring the intricate mechanisms by which mitochondria contribute to tumor metastasis and examining the progress of mitochondria-targeted cancer therapies.</p>","PeriodicalId":9489,"journal":{"name":"Cancer and Metastasis Reviews","volume":" ","pages":"1419-1443"},"PeriodicalIF":7.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554835/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jasmine M Bacon, Johanna L Jones, Guei-Sheung Liu, Joanne L Dickinson, Kelsie Raspin
{"title":"Mitochondrial ribosomal proteins in metastasis and their potential use as prognostic and therapeutic targets.","authors":"Jasmine M Bacon, Johanna L Jones, Guei-Sheung Liu, Joanne L Dickinson, Kelsie Raspin","doi":"10.1007/s10555-024-10216-4","DOIUrl":"10.1007/s10555-024-10216-4","url":null,"abstract":"<p><p>The mitochondrion is an essential cell organelle known as the powerhouse of the cell. Mitochondrial ribosomal proteins (MRPs) are nuclear encoded, synthesised in the cytoplasm but perform their main functions in the mitochondria, which includes translation, transcription, cell death and maintenance. However, MRPs have also been implicated in cancer, particularly advanced disease and metastasis across a broad range of cancer types, where they play a central role in cell survival and progression. For some, their altered expression has been investigated as potential prognostic markers, and/or therapeutic targets, which is the focus of this review. Several therapies targeting MRPs are currently approved by the Food and Drug Administration and the European Medicines Agency for use in other diseases, revealing the opportunity for repurposing their use in advanced and metastatic cancer. Herein, we review the evidence supporting key MRPs as molecular drivers of advanced disease in multiple cancer types. We also highlight promising avenues for future use of MRPs as precision targets in the treatment of late-stage cancers for which there are currently very limited effective treatment options.</p>","PeriodicalId":9489,"journal":{"name":"Cancer and Metastasis Reviews","volume":" ","pages":"1119-1135"},"PeriodicalIF":4.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554709/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142361181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}