Bulletin of the American Meteorological Society最新文献

筛选
英文 中文
East African Megacity Air Quality: Rationale and Framework for a Measurement and Modeling Program 东非大城市空气质量:测量和建模计划的原理和框架
IF 8 1区 地球科学
Bulletin of the American Meteorological Society Pub Date : 2024-07-09 DOI: 10.1175/bams-d-23-0098.1
Solomon Bililign, Steven S. Brown, Daniel M. Westervelt, Rajesh Kumar, Wenfu Tang, Frank Flocke, William Vizuete, Kassahun Ture, Francis D. Pope, Belay Demoz, Akua Asa-Awuku, Pieternel F. Levelt, Egide Kalisa, Garima Raheja, Alex Ndyabakira, Michael J. Gatari
{"title":"East African Megacity Air Quality: Rationale and Framework for a Measurement and Modeling Program","authors":"Solomon Bililign, Steven S. Brown, Daniel M. Westervelt, Rajesh Kumar, Wenfu Tang, Frank Flocke, William Vizuete, Kassahun Ture, Francis D. Pope, Belay Demoz, Akua Asa-Awuku, Pieternel F. Levelt, Egide Kalisa, Garima Raheja, Alex Ndyabakira, Michael J. Gatari","doi":"10.1175/bams-d-23-0098.1","DOIUrl":"https://doi.org/10.1175/bams-d-23-0098.1","url":null,"abstract":"Abstract Air pollution in Africa is a significant public health issue responsible for 1.1 million premature deaths annually. Sub-Saharan Africa has the highest rate of population growth and urbanization of any region in the world, with substantial potential for future emissions growth and worsening air quality. Accurate and extensive observations of meteorology and atmospheric composition have underpinned successful air pollution mitigation strategies in the Global North, yet Africa in general, and East Africa in particular, remain among the most sparsely observed regions in the world. This paper is based on the discussion of these issues during two international workshops, one held virtually in the U.S. in July 2021 and one in Kigali, Rwanda in January 2023. The workshops were designed to develop a measurement, capacity building and collaboration strategy to improve air quality relevant measurements, modeling, and data availability in East Africa. This paper frames the relevant scientific needs and describes the requirements for training and infrastructure development for an integrated observing and modeling strategy that includes partnerships between East African scientists and organizations and their counterparts in the developed world.","PeriodicalId":9464,"journal":{"name":"Bulletin of the American Meteorological Society","volume":"27 1","pages":""},"PeriodicalIF":8.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141576520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Climate Services Dialog to Build Sector-Based Climate Early Warning Systems in the Republic of Palau 气候服务对话,在帕劳共和国建立基于部门的气候预警系统
IF 8 1区 地球科学
Bulletin of the American Meteorological Society Pub Date : 2024-07-09 DOI: 10.1175/bams-d-24-0157.1
Laura Brewington, Chelsey Bryson, Abby Frazier, Victoria W. Keener, John J. Marra, Erbai X. Matsutaro, Kikuko Mochimaru, Paula Moehlenkamp
{"title":"A Climate Services Dialog to Build Sector-Based Climate Early Warning Systems in the Republic of Palau","authors":"Laura Brewington, Chelsey Bryson, Abby Frazier, Victoria W. Keener, John J. Marra, Erbai X. Matsutaro, Kikuko Mochimaru, Paula Moehlenkamp","doi":"10.1175/bams-d-24-0157.1","DOIUrl":"https://doi.org/10.1175/bams-d-24-0157.1","url":null,"abstract":"\"A Climate Services Dialog to Build Sector-Based Climate Early Warning Systems in the Republic of Palau\" published on 09 Jul 2024 by American Meteorological Society.","PeriodicalId":9464,"journal":{"name":"Bulletin of the American Meteorological Society","volume":"46 1","pages":""},"PeriodicalIF":8.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141576517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influences of Anthropogenic Forcing on the Exceptionally Warm August 2022 over the Eastern Tibetan Plateau 人为强迫对青藏高原东部 2022 年 8 月异常温暖的影响
IF 8 1区 地球科学
Bulletin of the American Meteorological Society Pub Date : 2024-07-08 DOI: 10.1175/bams-d-23-0179.1
Jianping Duan, Haoxin Zhang, Dongnan Jian, Cunde Xiao, Fengqi Hao, Hongzhou Zhu, Fraser C. Lott, Peter A. Stott
{"title":"Influences of Anthropogenic Forcing on the Exceptionally Warm August 2022 over the Eastern Tibetan Plateau","authors":"Jianping Duan, Haoxin Zhang, Dongnan Jian, Cunde Xiao, Fengqi Hao, Hongzhou Zhu, Fraser C. Lott, Peter A. Stott","doi":"10.1175/bams-d-23-0179.1","DOIUrl":"https://doi.org/10.1175/bams-d-23-0179.1","url":null,"abstract":"Phase 6 of the Coupled Model Intercomparison Project (CMIP6) simulations suggest that the extremely warm August over the Tibetan Plateau in 2022 could not occur without human influences, which corresponds to a new normal during 2070–2100.","PeriodicalId":9464,"journal":{"name":"Bulletin of the American Meteorological Society","volume":"55 1","pages":""},"PeriodicalIF":8.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141576518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Attribution of the Extreme 2022 Summer Drought along the Yangtze River Valley in China Based on Detection and Attribution System of Chinese Academy of Sciences 基于中国科学院探测与归因系统的中国长江流域 2022 年极端夏旱归因研究
IF 8 1区 地球科学
Bulletin of the American Meteorological Society Pub Date : 2024-07-03 DOI: 10.1175/bams-d-23-0258.1
Lixia Zhang, Tianjun Zhou, Xing Zhang, Wenxia Zhang, Lijuan Li, Laurent Li
{"title":"Attribution of the Extreme 2022 Summer Drought along the Yangtze River Valley in China Based on Detection and Attribution System of Chinese Academy of Sciences","authors":"Lixia Zhang, Tianjun Zhou, Xing Zhang, Wenxia Zhang, Lijuan Li, Laurent Li","doi":"10.1175/bams-d-23-0258.1","DOIUrl":"https://doi.org/10.1175/bams-d-23-0258.1","url":null,"abstract":"\"Attribution of the Extreme 2022 Summer Drought along the Yangtze River Valley in China Based on Detection and Attribution System of Chinese Academy of Sciences\" published on 03 Jul 2024 by American Meteorological Society.","PeriodicalId":9464,"journal":{"name":"Bulletin of the American Meteorological Society","volume":"26 1","pages":""},"PeriodicalIF":8.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141505154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New WMO Certified Tropical Cyclone Duration Extreme: TC Freddy (04 February to 14 March 2023) Lasting for 36.0 days 世界气象组织新认证的热带气旋极端持续时间:TC Freddy(2023 年 2 月 4 日至 3 月 14 日)持续 36.0 天
IF 8 1区 地球科学
Bulletin of the American Meteorological Society Pub Date : 2024-07-01 DOI: 10.1175/bams-d-24-0071.1
Craig Earl-Spurr, Sébastien Langlade, Daniel Krahenbuhl, Sim D. Aberson, Manola Brunet, Johnny Chan, Chris Fogarty, Christopher W. Landsea, Blair Trewin, Christopher Velden, Robert C. Balling, Randall S. Cerveny
{"title":"New WMO Certified Tropical Cyclone Duration Extreme: TC Freddy (04 February to 14 March 2023) Lasting for 36.0 days","authors":"Craig Earl-Spurr, Sébastien Langlade, Daniel Krahenbuhl, Sim D. Aberson, Manola Brunet, Johnny Chan, Chris Fogarty, Christopher W. Landsea, Blair Trewin, Christopher Velden, Robert C. Balling, Randall S. Cerveny","doi":"10.1175/bams-d-24-0071.1","DOIUrl":"https://doi.org/10.1175/bams-d-24-0071.1","url":null,"abstract":"Abstract A World Meteorological Organization team has evaluated 2023's Tropical Cyclone Freddy's duration of 36.0 days (with 10-min average wind-speeds of 30 kt or higher) as the world record for longest tropical cyclone duration.","PeriodicalId":9464,"journal":{"name":"Bulletin of the American Meteorological Society","volume":"162 1","pages":""},"PeriodicalIF":8.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141505155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How Well Do Seasonal Climate Anomalies Match Expected El Niño-Southern Oscillation (ENSO) Impacts? 季节性气候异常与预期的厄尔尼诺-南方涛动(ENSO)影响匹配程度如何?
IF 8 1区 地球科学
Bulletin of the American Meteorological Society Pub Date : 2024-07-01 DOI: 10.1175/bams-d-23-0252.1
Michelle L. L’Heureux, Daniel S. Harnos, Emily Becker, Brian Brettschneider, Mingyue Chen, Nathaniel C. Johnson, Arun Kumar, Michael K. Tippett
{"title":"How Well Do Seasonal Climate Anomalies Match Expected El Niño-Southern Oscillation (ENSO) Impacts?","authors":"Michelle L. L’Heureux, Daniel S. Harnos, Emily Becker, Brian Brettschneider, Mingyue Chen, Nathaniel C. Johnson, Arun Kumar, Michael K. Tippett","doi":"10.1175/bams-d-23-0252.1","DOIUrl":"https://doi.org/10.1175/bams-d-23-0252.1","url":null,"abstract":"Abstract Did the strong 2023–24 El Niño live up to the hype? While climate prediction is inherently probabilistic, many users compare El Niño events against a deterministic map of expected impacts (e.g., wetter or drier regions). Here, using this event as a guide, we show that no El Niño perfectly matches the ideal image and that observed anomalies will only partially match what was anticipated. In fact, the degree to which the climate anomalies match the expected ENSO impacts tends to scale with the strength of the event. The 2023–24 event generally matched well with ENSO expectations around the United States. However, this will not always be the case, as the analysis shows larger deviations from the historical ENSO pattern of impacts are commonplace, with some climate variables more prone to inconsistencies (e.g., temperature) than others (e.g., precipitation). Users should incorporate this inherent uncertainty in their risk and decision-making analysis.","PeriodicalId":9464,"journal":{"name":"Bulletin of the American Meteorological Society","volume":"80 1","pages":""},"PeriodicalIF":8.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141505156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamics, statistics and predictability of Rossby waves, heatwaves and spatially compounded extreme events 罗斯比波、热浪和空间复合极端事件的动力学、统计学和可预测性
IF 8 1区 地球科学
Bulletin of the American Meteorological Society Pub Date : 2024-06-27 DOI: 10.1175/bams-d-24-0145.1
Valerio Lembo, Simona Bordoni, Emanuele Bevacqua, Daniela I. V. Domeisen, Christian L. E. Franzke, Vera M. Galfi, Chaim Garfinkel, Christian I. Grams, Assaf Hochman, Roshan Jha, Kai Kornhuber, Frank Kwasniok, Valerio Lucarini, Gabriele Messori, Duncan Pappert, Iago Perez-Fernandez, Jacopo Riboldi, Emmanuele Russo, Tiffany A. Shaw, Iana Strigunova, Felix Strnad, Pascal Yiou, Nedjeljka Zagar
{"title":"Dynamics, statistics and predictability of Rossby waves, heatwaves and spatially compounded extreme events","authors":"Valerio Lembo, Simona Bordoni, Emanuele Bevacqua, Daniela I. V. Domeisen, Christian L. E. Franzke, Vera M. Galfi, Chaim Garfinkel, Christian I. Grams, Assaf Hochman, Roshan Jha, Kai Kornhuber, Frank Kwasniok, Valerio Lucarini, Gabriele Messori, Duncan Pappert, Iago Perez-Fernandez, Jacopo Riboldi, Emmanuele Russo, Tiffany A. Shaw, Iana Strigunova, Felix Strnad, Pascal Yiou, Nedjeljka Zagar","doi":"10.1175/bams-d-24-0145.1","DOIUrl":"https://doi.org/10.1175/bams-d-24-0145.1","url":null,"abstract":"Abstract What: A workshop on Rossby waves, heatwaves and compound extreme events was co-organized by the Institute for Atmospheric Sciences and Climate (ISAC) of the National Research Council of Italy (CNR) and the University of Trento, Italy. The workshop gathered experts from different fields, such as extreme events analysis, atmospheric dynamics, climate modeling, Numerical Weather Prediction, with the aim to discuss state-of-the-art research, open challenges, and stimulate networking across different communities. When: 28-30th November 2023. Where: CNR Research Area, Bologna, Italy.","PeriodicalId":9464,"journal":{"name":"Bulletin of the American Meteorological Society","volume":"46 1","pages":""},"PeriodicalIF":8.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141505157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Common Community Physics Package: Fostering Collaborative Development in Physical Parameterizations and Suites 共同社区物理软件包:促进物理参数化和套件的合作开发
IF 8 1区 地球科学
Bulletin of the American Meteorological Society Pub Date : 2024-06-19 DOI: 10.1175/bams-d-23-0227.1
Ligia Bernardet, Lisa Bengtsson, Patrick A. Reinecke, Fanglin Yang, Man Zhang, Kyle Hall, James Doyle, Matus Martini, Grant Firl, Lulin Xue
{"title":"Common Community Physics Package: Fostering Collaborative Development in Physical Parameterizations and Suites","authors":"Ligia Bernardet, Lisa Bengtsson, Patrick A. Reinecke, Fanglin Yang, Man Zhang, Kyle Hall, James Doyle, Matus Martini, Grant Firl, Lulin Xue","doi":"10.1175/bams-d-23-0227.1","DOIUrl":"https://doi.org/10.1175/bams-d-23-0227.1","url":null,"abstract":"Abstract The Common Community Physics Package (CCPP) is a state-of-the-art infrastructure designed to facilitate community-wide development of atmospheric physics parameterizations, support their interoperability among different modeling centers, and enable the transition of research to operations in NWP and climate modeling. The CCPP consists of two elements: the Physics (a repository of parameterizations) and the Framework (an infrastructure for interfacing the parameterizations with host models). The CCPP is a community resource: its latest release has 23 primary parameterizations, which can be organized into six supported suites. It is distributed with a single-column model to facilitate physics development and experimentation. The Developmental Testbed Center provides support to users and developers. A key aspect of the CCPP is its interoperability, that is, its ability to be used by multiple host models. This enables synergistic collaboration among groups dispersed over various institutions and working on various models. In this article we provide an overview of the CCPP and how it is being used in two leading modeling systems. The CCPP is part of the Unified Forecast System (UFS), is included in the NOAA operational Hurricane Analysis and Forecast System (HAFS) version one, and is slated for use in all upcoming NOAA global and limited-area UFS applications for operations. Similarly, the CCPP has been integrated into the Navy Environmental Prediction System Using a Nonhydrostatic Engine (NEPTUNE) model and is undergoing testing for upcoming transition to operations. These experiences make physics interoperability a reality and open the doors for much broader collaborative efforts on ESM development.","PeriodicalId":9464,"journal":{"name":"Bulletin of the American Meteorological Society","volume":"343 1","pages":""},"PeriodicalIF":8.0,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141505158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Thermal Equator on Earth and Mars 地球和火星上的热赤道
IF 8 1区 地球科学
Bulletin of the American Meteorological Society Pub Date : 2024-06-17 DOI: 10.1175/bams-d-23-0214.1
Christopher P. McKay, Mateo N. Cintron
{"title":"The Thermal Equator on Earth and Mars","authors":"Christopher P. McKay, Mateo N. Cintron","doi":"10.1175/bams-d-23-0214.1","DOIUrl":"https://doi.org/10.1175/bams-d-23-0214.1","url":null,"abstract":"Abstract The thermal equator (also known as the heat equator) is the circumplanetary set of points that represent the highest mean annual temperature at each longitude. Recent high precision global datasets for Earth and Mars provide a basis for a detailed calculation of the thermal equator on these worlds. On Earth, the temperature values that comprise the thermal equator range from 25.85° to 34.75°C, with a mean of 27.75° ± 1.3°C, and extends in latitude as high as 20°N in Mexico and 29.3°N in the Indian subcontinent. The maximum southern extent is 20°S in Australia. On Mars, lacking oceans, the thermal equator takes a simpler track and is roughly parallel to the equator, and displaced 5°–10°S. However, there is a region of longitude on Mars where the thermal equator becomes bimodal with a northern branch centered at 10°N and a southern branch centered at 20°S.","PeriodicalId":9464,"journal":{"name":"Bulletin of the American Meteorological Society","volume":"42 1","pages":""},"PeriodicalIF":8.0,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141505160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Annual Minimum Snow/Ice Extent Variations over Greenland since 2000: Ice Sheet, Peripheral Areas, and Relation to Ice Mass Balance 2000 年以来格陵兰岛年最小积雪/冰面积变化:冰原、周边地区以及与冰质量平衡的关系
IF 8 1区 地球科学
Bulletin of the American Meteorological Society Pub Date : 2024-06-03 DOI: 10.1175/bams-d-22-0244.1
Alexander P. Trishchenko, Calin Ungureanu
{"title":"Annual Minimum Snow/Ice Extent Variations over Greenland since 2000: Ice Sheet, Peripheral Areas, and Relation to Ice Mass Balance","authors":"Alexander P. Trishchenko, Calin Ungureanu","doi":"10.1175/bams-d-22-0244.1","DOIUrl":"https://doi.org/10.1175/bams-d-22-0244.1","url":null,"abstract":"Abstract A novel satellite image processing technique was utilized to produce an annual time series of the Minimum Snow/Ice (MSI) extent over the entire Greenland landmass for the period 2000-2022. The information was derived from the Moderate Resolution Imaging Spectroradiometer 10-day clear-sky composites over the April-September period. The data products were generated from 250-m swath imagery. The annual aggregates were downscaled to a 150-m grid for consistency with data on margins of Greenland available from the Geological Survey of Denmark and Greenland (GEUS), and the Greenland Ice Mapping Project. Inter-annual variations in the MSI extent were derived and analyzed for each of the seven major glacier basins in Greenland split into the main ice sheet, represented by a static map, and the peripheral areas from which all variations originated. Four of the seven regions demonstrated statistically significant negative trends in the MSI extent. The entire Greenland area also showed a declining snow/ice extent although this was not statistically significant. The region-wide and peripheral snow/ice extent varied from a minimum of 1.807 × 106 km2 (1.449 × 105 km2 for peripheral areas) observed in 2012 to a maximum of 1.860 × 106 km2 (1.977 × 105 km2) observed in 2006 with an average value of 1.829 × 106 km2 (1.664 × 105 km2). The derived MSI variations showed statistically significant correlation with the near-surface 2- m air temperature from the ERA5 Land reanalysis and Greenland ice mass balance from GEUS for all catchments, with correlation coefficients for the entire area equal to −0.74 and 0.53, respectively. The mapping of many peripheral glaciers and ice shelves included in the glaciology databases and utilized for the IPCC reporting is not always consistent with our results and requires improvement, especially in the coastal areas.","PeriodicalId":9464,"journal":{"name":"Bulletin of the American Meteorological Society","volume":"75 1","pages":""},"PeriodicalIF":8.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141259457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信