Current drug delivery最新文献

筛选
英文 中文
Nanostructured Lipid Carrier-Mediated Transdermal Delivery System of Glibenclamide for Gestational Diabetes: Pharmacokinetic and Pharmacodynamic Evaluation. 纳米结构脂质载体介导的格列本脲透皮给药系统用于妊娠糖尿病:药代动力学和药效学评估。
Current drug delivery Pub Date : 2024-01-01 DOI: 10.2174/0115672018274038231212105440
M Ashwini, Preethi Sudheer, Bharani S Sogali
{"title":"Nanostructured Lipid Carrier-Mediated Transdermal Delivery System of Glibenclamide for Gestational Diabetes: Pharmacokinetic and Pharmacodynamic Evaluation.","authors":"M Ashwini, Preethi Sudheer, Bharani S Sogali","doi":"10.2174/0115672018274038231212105440","DOIUrl":"10.2174/0115672018274038231212105440","url":null,"abstract":"<p><strong>Background: </strong>Gestational diabetes mellitus (GDM) poses significant risks during pregnancy for both mother and fetus. Adherence to oral antidiabetic medications, like glibenclamide (GB), can be challenging, necessitating novel drug delivery methods. Nanostructured lipid carriers (NLC) offer a promising approach by efficiently permeating the skin due to their small size and lipid-based composition.</p><p><strong>Objective: </strong>This study aimed to develop and evaluate transdermal patches loaded with glibenclamide NLCs to treat GDM.</p><p><strong>Methods: </strong>Glibenclamide NLCs were prepared using hot homogenization with ultrasonication and melt dispersion method. A central composite design was utilized to optimize the formulations. Transdermal patches containing optimized NLCs were developed using HPMC K 100 and Eudragit L polymers. The patches were evaluated for various parameters, and their pharmacokinetic and pharmacodynamic studies were carried out to assess their safety and efficacy.</p><p><strong>Results: </strong>Optimized NLCs efficiently permeated rat skin. Cell viability studies indicated the nontoxicity of the formulations. NLC-loaded transdermal patches (F2 and F7) showed drug release of 1098 μg/cm<sup>2</sup> and 1001.83 μg/cm<sup>2</sup> in 24 h, with a 2.5-fold higher flux and permeation coefficient than the GB patch. Pharmacokinetic analysis revealed Tmax of 8 and 10 h and C<sub>max</sub> of 7127 ng/ml and 7960 ng/ml for F2 and F7, respectively, ensuring sustained drug action. AUC0-α was 625681 ng/ml·h and 363625 ng/ml·h for F2 and F7, respectively, indicating improved bioavailability.</p><p><strong>Conclusion: </strong>Transdermal patches incorporating NLCs hold promise for enhancing glibenclamide's therapeutic efficacy in GDM treatment. Improved skin permeation, sustained drug release, and enhanced bioavailability make NLC-based transdermal patches a potential alternative with better patient compliance.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139428217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Polyvinyl Alcohol/Polyethylene Glycol Copolymer-based Orodispersible Films Loaded with Entecavir: Formulation and In vitro Characterization. 基于聚乙烯醇/聚乙二醇共聚物的恩替卡韦口服分散膜的开发:配方和体外表征。
Current drug delivery Pub Date : 2024-01-01 DOI: 10.2174/0115672018261294231024093926
Teng Wei, Bing-Yu Zhou, Xin-Hong Wu, Xue-Ai Liu, Ming-Wei Huo, Xiang-Xiang Huang, Ling-Zhi Shi, Li-Li Shi, Qin-Ri Cao
{"title":"Development of Polyvinyl Alcohol/Polyethylene Glycol Copolymer-based Orodispersible Films Loaded with Entecavir: Formulation and <i>In vitro</i> Characterization.","authors":"Teng Wei, Bing-Yu Zhou, Xin-Hong Wu, Xue-Ai Liu, Ming-Wei Huo, Xiang-Xiang Huang, Ling-Zhi Shi, Li-Li Shi, Qin-Ri Cao","doi":"10.2174/0115672018261294231024093926","DOIUrl":"10.2174/0115672018261294231024093926","url":null,"abstract":"<p><strong>Purpose: </strong>The aim of the study is to prepare entecavir (ETV)-loaded orodispersible films (ODFs) using polyvinyl alcohol (PVA)/polyethylene glycol (PEG) graft copolymer (Kollicoat® IR) as a film-forming agent, and further to evaluate the dissolution rate, mechanical and physicochemical properties of films.</p><p><strong>Methods: </strong>ETV-ODFs were prepared by a solvent casting method. The amount of film-forming agent, plasticizer, and disintegrating agent was optimized in terms of the appearance, thickness, disintegration time and mechanical properties of ODFs. The compatibility between the drug and each excipient was conducted under high temperature (60 °C), high humidity (RH 92.5%), and strong light (4500 Lx) for 10 days. The dissolution study of optimal ODFs compared with the original commercial tablet (Baraclude®) was performed using a paddle method in pH 1.0, pH 4.5, pH 6.8, and pH 7.4 media at 37 °C. The morphology of ODFs was observed via scanning electron microscopy (SEM). The mechanical properties such as tensile strength (TS), elastic modulus (EM), and percentage elongation (E%) of ODFs were evaluated using the universal testing machine. The physicochemical properties of ODFs were investigated using X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FT-IR).</p><p><strong>Results: </strong>The related substances were less than 0.5% under high temperature, high humidity, and strong light for 10 days when ETV was mixed with excipients. The optimal formulation of ODFs was set as the quality ratio of Kollicoat® IR, glycerol, sodium alginate (ALG-Na): TiO2: MCC+CMC-Na: ETV was 60:9:12:1:1:1. The drug-loaded ODFs were white and translucent with excellent stripping property. The thickness, disintegration time, EM, TS, and E% were 103.33±7.02 μm, 25.31±1.95 s, 25.34±8.69 Mpa, 2.14±0.26 Mpa, and 65.45±19.41 %, respectively. The cumulative drug release from ODFs was more than 90% in four different media at 10 min. The SEM showed that the drug was highly dispersible in ODFs, and the XRD, DSC, and FT-IR results showed that there occurred some interactions between the drug and excipients.</p><p><strong>Conclusion: </strong>In conclusion, the developed ETV-loaded ODFs showed relatively short disintegration time, rapid drug dissolution, and excellent mechanical properties. This might be an alternative to conventional ETV Tablets for the treatment of chronic hepatitis B.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71490869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transdermal Drug Delivery System of Linagliptin Sustained-release Microparticle Gels: In vitro Characterization and In vivo Evaluation. 利拉利汀缓释微粒凝胶透皮给药系统:体外表征和体内评估。
Current drug delivery Pub Date : 2024-01-01 DOI: 10.2174/0115672018279370240103062944
Jiayan Liu, Song Guo, Shuai Hong, Jingshu Piao, Mingguan Piao
{"title":"Transdermal Drug Delivery System of Linagliptin Sustained-release Microparticle Gels: <i>In vitro</i> Characterization and <i>In vivo</i> Evaluation.","authors":"Jiayan Liu, Song Guo, Shuai Hong, Jingshu Piao, Mingguan Piao","doi":"10.2174/0115672018279370240103062944","DOIUrl":"10.2174/0115672018279370240103062944","url":null,"abstract":"<p><strong>Background: </strong>Linagliptin (LNG) exhibits poor bioavailability and numerous side effects, significantly limiting its use. Transdermal drug delivery systems (TDDS) offer a potential solution to overcome the first-pass effect and gastrointestinal reactions associated with oral formulations.</p><p><strong>Objective: </strong>The aim of this study was to develop LNG microparticle gels to enhance drug bioavailability and mitigate side effects.</p><p><strong>Methods: </strong>Linagliptin hyaluronic acid (LNG-HA) microparticles were prepared by spray drying method and their formulation was optimized via a one-factor method. The solubility and release were investigated using the slurry method. LNG-HA microparticle gels were prepared and optimised using in vitro transdermal permeation assay. The hypoglycaemic effect of the LNG-HA microparticle gel was examined on diabetic mice.</p><p><strong>Results: </strong>The results indicated that the LNG-HA microparticle encapsulation rate was 84.46%. Carbomer was selected as the gel matrix for the microparticle gels. Compared to the oral API, the microparticle gel formulation demonstrated a distinct biphasic release pattern. In the first 30 minutes, only 43.56% of the drug was released, followed by a gradual release. This indicates that the formulation achieved a slow-release effect from a dual reservoir system. Furthermore, pharmacodynamic studies revealed a sustained hypoglycemic effect lasting for 48 hours with the LNG microparticle gel formulation.</p><p><strong>Conclusion: </strong>These findings signify that the LNG microparticle gel holds significant clinical value for providing sustained release and justifies its practical application.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139514473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeted Bacterial Keratitis Treatment with Polyethylene Glycol-Dithiothreitol-Boric Acid Hydrogel and Gatifloxacin. 用聚乙二醇-二硫苏糖醇-硼酸水凝胶和加替沙星治疗细菌性角膜炎
Current drug delivery Pub Date : 2024-01-01 DOI: 10.2174/0115672018279105240226050253
Xiao Shen, Chunlian Huang, Jianhai Bai, Jing Wen
{"title":"Targeted Bacterial Keratitis Treatment with Polyethylene Glycol-Dithiothreitol-Boric Acid Hydrogel and Gatifloxacin.","authors":"Xiao Shen, Chunlian Huang, Jianhai Bai, Jing Wen","doi":"10.2174/0115672018279105240226050253","DOIUrl":"10.2174/0115672018279105240226050253","url":null,"abstract":"<p><strong>Introduction/objective: </strong>To prolong the ocular residence time of gatifloxacin and enhance its efficacy against bacterial keratitis, this study developed a velocity-controlled polyethylene glycol-dithiothreitol-boric acid (PDB) hydrogel loaded with gatifloxacin.</p><p><strong>Methods: </strong>First, the basic properties of the synthesized PDB hydrogel and the gatifloxacin-loaded PDB hydrogel were assessed. Secondly, the <i>in vitro</i> degradation rate of the drug-loaded PDB was measured in a simulated body fluid environment with pH 7.4/5.5. The release behavior of the drug-loaded PDB was studied using a dialysis method with PBS solution of pH 7.4/5.5 as the release medium. Finally, a mouse model of bacterial keratitis was established, and tissue morphology was observed using hematoxylin-eosin staining. Additionally, mouse tear fluid was extracted to observe the antibacterial effect of the gatifloxacin-loaded PDB hydrogel.</p><p><strong>Results: </strong>The results showed that the PDB hydrogel had a particle size of 124.9 nm and a zeta potential of -23.3 mV, with good porosity, thermosensitivity, viscosity distribution, rheological properties, and high cell compatibility. The encapsulation of gatifloxacin did not alter the physical properties of the PDB hydrogel and maintained appropriate swelling and stability, with a high drug release rate in acidic conditions. Furthermore, animal experiments demonstrated that the gatifloxacin- loaded PDB hydrogel exhibited superior therapeutic effects compared to gatifloxacin eye drops and displayed strong antibacterial capabilities against bacterial keratitis.</p><p><strong>Conclusion: </strong>This study successfully synthesized PDB hydrogel and developed a gatifloxacin drug release system. The hydrogel exhibited good thermosensitivity, pH responsiveness, stability, and excellent biocompatibility, which can enhance drug retention, utilization, and therapeutic effects on the ocular surface.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139998794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comprehensive Review on Niosomes as a Strategy in Targeted Drug Delivery: Pharmaceutical, and Herbal Cosmetic Applications. 全面评述作为靶向给药策略的 Niosomes:制药和草药化妆品应用。
Current drug delivery Pub Date : 2024-01-01 DOI: 10.2174/0115672018269199231121055548
Sakshi Saharawat, Sushma Verma
{"title":"A Comprehensive Review on Niosomes as a Strategy in Targeted Drug Delivery: Pharmaceutical, and Herbal Cosmetic Applications.","authors":"Sakshi Saharawat, Sushma Verma","doi":"10.2174/0115672018269199231121055548","DOIUrl":"10.2174/0115672018269199231121055548","url":null,"abstract":"<p><p>Niosomes are newly developed, self-assembling sac-like transporters that deliver medication at a specific site in a focused manner, increasing availability in the body and prolonging healing effects. Niosome discovery has increased drugs' therapeutic effectiveness while also reducing adverse effects. This article aims to concentrate on the increase in the worldwide utilization of niosomal formulation. This overview presents a thorough perspective of niosomal investigation up until now, encompassing categories and production techniques, their significance in pharmaceutical transportation, and cosmetic use. The thorough literature review revealed that extensive attention has been given to developing nanocarriers for drug delivery as they hold immense endeavor to attain targeted delivery to the affected area simultaneously shielding the adjacent healthy tissue. Many reviews and research papers have been published that demonstrate the interest of scientists in niosomes. Phytoconstituents, which possess antioxidant, antibiotic, anti-inflammatory, wound healing, anti-acne, and skin whitening properties, are also encapsulated into niosome. Their flexibility allows for the incorporation of various therapeutic agents, including small molecules, proteins, and peptides making them adaptable for different types of drugs. Niosomes can be modified with ligands, enhancing their targeting capabilities. A flexible drug delivery mechanism provided by non-ionic vesicles, which are self-assembling vesicular nano-carriers created from hydrating non-ionic surfactant, cholesterol, or amphiphilic compounds along comprehensive applications such as transdermal and brain-targeted delivery.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139479365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research Progress on Immunomodulatory Effects of Poly (Lactic-co- Glycolic Acid) Nanoparticles Loaded with Traditional Chinese Medicine Monomers. 中药单体负载聚乳酸-乙醇酸纳米粒子免疫调节作用研究进展。
Current drug delivery Pub Date : 2024-01-01 DOI: 10.2174/0115672018255493230922101434
Bocui Song, Qian Chen, Chunyu Tong, Yuqi Li, Shuang Li, Xue Shen, Wenqi Niu, Meihan Hao, Yunfei Ma, Yanhong Wang
{"title":"Research Progress on Immunomodulatory Effects of Poly (Lactic-co- Glycolic Acid) Nanoparticles Loaded with Traditional Chinese Medicine Monomers.","authors":"Bocui Song, Qian Chen, Chunyu Tong, Yuqi Li, Shuang Li, Xue Shen, Wenqi Niu, Meihan Hao, Yunfei Ma, Yanhong Wang","doi":"10.2174/0115672018255493230922101434","DOIUrl":"10.2174/0115672018255493230922101434","url":null,"abstract":"<p><p>Immunomodulatory mechanisms are indispensable and key factors in maintaining the balance of the environment in humans. When the immune function of the immune system is impaired, autoimmune diseases occur. Excessive body fatigue, natural aging of the human body, malnutrition, genetic factors and other reasons cause low immune function, due to which the body is prone to being infected by bacteria or cancer. Clinically, the existing therapeutic drugs still have problems such as high toxicity, long treatment cycle, drug resistance and high price, so we still need to explore and develop a high efficiency and low toxicity drug. Poly(lactic-co-glycolic acid) (PLGA) refers to a nontoxic polymer compound that exhibits excellent biocompatibility. Traditional Chinese medicine (TCM) monomers come from natural plants, and have the characteristics of high efficiency and low toxicity. Applying PLGA to TCM monomers can make up for the defects of traditional dosage forms, improve bioavailability, reduce the frequency and dosage of drug use, and reduce toxicity and side effects, thus having the characteristics of sustained release and targeting. Accordingly, PLGA nanoparticles loaded with TCM monomers have been the focus of development. The previous research on drug loading advantages, preparation methods, and immune regulation of TCM PLGA nanoparticles is summarized in the following sections.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41224608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of Antioxidant and Anti-inflammatory Properties of Berberine Nanomicelles: In vitro and In vivo Studies. 黄连素纳米胶束的抗氧化和抗炎特性研究:体外和体内研究。
Current drug delivery Pub Date : 2024-01-01 DOI: 10.2174/0115672018258030230920035222
Marjan Heidarzadeh, Mehriar Amininasab, Seyed Mahdi Rezayat, Seyyedeh Elaheh Mousavi
{"title":"Investigation of Antioxidant and Anti-inflammatory Properties of Berberine Nanomicelles: <i>In vitro</i> and <i>In vivo</i> Studies.","authors":"Marjan Heidarzadeh, Mehriar Amininasab, Seyed Mahdi Rezayat, Seyyedeh Elaheh Mousavi","doi":"10.2174/0115672018258030230920035222","DOIUrl":"10.2174/0115672018258030230920035222","url":null,"abstract":"<p><strong>Introduction: </strong>In the present study, neuroprotective effects of berberine (BBR) and berberine nanomicelle (BBR-NM) against lipopolysaccharides (LPS)-induced stress oxidative were investigated, and compared by evaluating their antioxidant and anti-inflammatory activities in PC12 cells, and rat brains. A fast, green, and simple synthesis method was used to prepare BBR-NMs.</p><p><strong>Method: </strong>The prepared BBR-NMs were then characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). <i>In vitro</i> experiments were carried out on the LPS-treated PC12 cell lines to investigate the anti-cytotoxic and antioxidant properties of BBR-NM and BBR. The results showed that BBR-NMs with a diameter of ~100 nm had higher protective effects against ROS production and cytotoxicity induced by LPS in PC12 cells in comparison with free BBR.</p><p><strong>Results: </strong>Moreover, <i>in vivo</i> experiments indicated that the activity levels of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), increased in the brain of LPS-treated rats administrated with BBR-NM at the optimum dose of 100 mg.kg<sup>-1</sup>. BBR-NM administration also resulted in decreased concentration of lipid peroxidation (MDA) and pro-inflammatory cytokines, such as Serum interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α).</p><p><strong>Conclusion: </strong>Overall, BBR-NM demonstrated higher neuroprotective effects than free BBR, making it a promising treatment for improving many diseases caused by oxidative stress and inflammation.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41184723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering the Therapeutic Applications of Nanomedicine in Ovarian Cancer Therapy: An Overview. 解读纳米药物在卵巢癌症治疗中的应用:综述。
Current drug delivery Pub Date : 2024-01-01 DOI: 10.2174/0115672018253815230922070558
Pooja Mathur, Shailendra Bhatt, Suresh Kumar, Sweta Kamboj, Rohit Kamboj, Arpana Rana, Harish Kumar, Ravinder Verma
{"title":"Deciphering the Therapeutic Applications of Nanomedicine in Ovarian Cancer Therapy: An Overview.","authors":"Pooja Mathur, Shailendra Bhatt, Suresh Kumar, Sweta Kamboj, Rohit Kamboj, Arpana Rana, Harish Kumar, Ravinder Verma","doi":"10.2174/0115672018253815230922070558","DOIUrl":"10.2174/0115672018253815230922070558","url":null,"abstract":"<p><p>The majority of deadly cancers that afflict the female reproductive system occur in the ovary. Around 1,40,000 women worldwide die from ovarian cancer each year, making it the sixth most common cancer-associated deceases among females in the United States. Modern, cutting-edge treatments like chemotherapy and surgery frequently produce full remissions, but the recurrence rate is still very high. When this crippling condition is diagnosed, there are frequently few therapeutic choices available because of how quietly it manifests. Healthcare practitioners must have a fundamental grasp of the warning signs and symptoms of ovarian cancer, as well as the imaging techniques and treatment choices available, to give the patient the best care possible. The discipline of medical nanotechnology has gained a lot of momentum in recent years in resolving issues and enhancing the detection and treatment of different illnesses, including cancer. This article gives a brief summary of types, risk factors and approaches to ovarian cancer treatment. We subsequently discussed the pathophysiology of ovarian cancer with the risk factors. This review also emphasizes the various signalling pathways involved in ovarian cancer. Our comprehensive integration of recent findings in fundamental research in the nano arena reveals the strong interest in these nanomedicines in ovarian cancer treatment. However, these nanomedicines still require more research, as indicated by the comparatively small number of clinical trials ongoing. This article will provide a reference for ovarian cancer treatment.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41224607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review on Novel Applications of Nanotechnology in the Management of Prostate Cancer. 纳米技术在癌症治疗中的新应用综述。
Current drug delivery Pub Date : 2024-01-01 DOI: 10.2174/0115672018180695230925113521
Arshi Khanam, Gurvirender Singh, Smita Narwal, Bhawna Chopra, Ashwani K Dhingra
{"title":"A Review on Novel Applications of Nanotechnology in the Management of Prostate Cancer.","authors":"Arshi Khanam, Gurvirender Singh, Smita Narwal, Bhawna Chopra, Ashwani K Dhingra","doi":"10.2174/0115672018180695230925113521","DOIUrl":"10.2174/0115672018180695230925113521","url":null,"abstract":"<p><strong>Background: </strong>Prostate cancer continues to be a serious danger to men's health, despite advances in the field of cancer nanotechnology. Although different types of cancer have been studied using nanomaterials and theranostic systems derived from nanomaterials, they have not yet reached their full potential for prostate cancer due to issues with in vivo biologic compatibility, immune reaction responses, accurate targetability, as well as a therapeutic outcome related to the nano-structured mechanism.</p><p><strong>Method: </strong>The ultimate motive of this article is to understand the theranostic nanotechnology-based scheme for treating prostate cancer. The categorization of diverse nanomaterials in accordance with biofunctionalization tactics and biomolecule sources has been emphasized in this review so that they might potentially be used in clinical contexts and future advances. These opportunities can enhance the direct visualization of prostate tumors, early identification of prostate cancer-associated biomarkers at extremely low detection limits, and finally, the therapy for prostate cancer.</p><p><strong>Result: </strong>In December 2022, a thorough examination of the scientific literature was carried out utilizing the Web of Science, PubMed, and Medline databases. The goal was to analyze novel applications of nanotechnology in the treatment of prostate cancer, together with their structural layouts and functionalities.</p><p><strong>Conclusion: </strong>The various treatments and the reported revolutionary nanotechnology-based systems appear to be precise, safe, and generally successful; as a result, this might open up a new avenue for the detection and eradication of prostate cancer.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54233171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Delivery Systems for Plasma-reactive Species and their Applications in the Field of Biomedicine. 血浆反应物输送系统及其在生物医学领域的应用。
Current drug delivery Pub Date : 2024-01-01 DOI: 10.2174/0115672018268207231124014915
Esmaeil Biazar, Farzaneh Aavani, Reza Zeinali, Bahareh Kheilnezhad, Kiana Taheri, Zahra Yahyaei
{"title":"Delivery Systems for Plasma-reactive Species and their Applications in the Field of Biomedicine.","authors":"Esmaeil Biazar, Farzaneh Aavani, Reza Zeinali, Bahareh Kheilnezhad, Kiana Taheri, Zahra Yahyaei","doi":"10.2174/0115672018268207231124014915","DOIUrl":"10.2174/0115672018268207231124014915","url":null,"abstract":"<p><p>Cold atmospheric plasma (CAP) is an ionized matter with potential applications in various medical fields, ranging from wound healing and disinfection to cancer treatment. CAP's clinical usefulness stems from its ability to act as an adjustable source of reactive oxygen and nitrogen species (RONS), which are known to function as pleiotropic signaling agents within cells. Plasma-activated species, such as RONS, have the potential to be consistently and precisely released by carriers, enabling their utilization in a wide array of biomedical applications. Furthermore, understanding the behavior of CAP in different environments, including water, salt solutions, culture medium, hydrogels, and nanoparticles, may lead to new opportunities for maximizing its therapeutic potential. This review article sought to provide a comprehensive and critical analysis of current biomaterial approaches for the targeted delivery of plasma-activated species in the hope to boost therapeutic response and clinical applicability.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139514471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信