{"title":"Nanofiber-Based Drug Delivery Systems: A Review on Its Applications, Challenges, and Envisioning Future Perspectives.","authors":"Munerah Alfadhel","doi":"10.2174/0115672018325012240902122946","DOIUrl":"https://doi.org/10.2174/0115672018325012240902122946","url":null,"abstract":"<p><p>Nanomaterials, especially nanofibers, hold considerable promise as drug delivery systems (DDS) by providing targeted administration of drugs due to their unique properties, such as large surface area, high porosity, and mechanical robustness. Nanofibers can be fabricated using various techniques like electrospinning, self-assembly, phase separation, and template synthesis, offering properties such as adjustable size, shape, high precision, and biodegradability. Additionally, features such as multiple target functionalization, controlled release of the drug, and prolonged circulation of the drug make nanofibers particularly suitable for biomedical applications, including drug delivery, tissue regeneration, and biosensing. This comprehensive review explores the characteristics, types, fabrication methods, and applications of nanofibers. Diverse types of polymer nanofibers are used in drug delivery, such as blended nanofibers, core-shell nanofibers, and layer-by-layer assembly, each demonstrating their own advantages in controlled drug release and targeted therapy. Electrospun nanofibers are extensively utilized in biomedical applications due to their superior mechanical performance and high porosity and advancements in coaxial electrospinning enabling the fabrication of core-shell nanofibers, offering controlled drug release kinetics and protection of loaded molecules. These nanofibers demonstrate enhanced bioactivity and biocompatibility and can find application in tissue engineering. Furthermore, this review addresses the challenges associated with nanofiber production, including reproducibility and scalability. Nanofibers exhibit the potential to revolutionize medical treatment across diverse therapeutic areas. Future research directions and challenges in nanofiber-based drug delivery discussed in this review offer guidance for further advancements in this rapidly evolving field.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142305435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cell Culture and Molecular Docking Analysis to Determine the Antiviral Activity of Folklore Medicinal Plants Against Chikungunya Virus.","authors":"Sukender Kumar, Samander Kaushik, Munish Garg","doi":"10.2174/0115672018307676240827103052","DOIUrl":"https://doi.org/10.2174/0115672018307676240827103052","url":null,"abstract":"<p><p><p> Introduction: Chikungunya Virus (CHIKV), a mosquito-transmitted pathogen, poses a significant global health threat owing to its widespread prevalence and high morbidity. There are no approved vaccines or antivirals for prevention or treatment. Screening of folklore medicinal plants has emerged as a promising approach to finding novel therapeutics to combat pathogens. Hence, this study aimed to evaluate the anti-chikungunya potential of folklore medicinal plants and their phytochemicals. <p> Methods: Maximum non-toxic concentrations (MNTD) of the extracts to Vero cells were determined by the cytotoxicity assay. A Focus-Forming Unit (FFU) assay was used to assess the antiviral activity of the extracts (at MNTD) against CHIKV in Vero cells under pre-, co-, and post-treatment conditions. GC-MS was used to detect the phytochemicals of the extracts, and Schrodinger (Maestro) software was employed for their molecular docking against the target protein of CHIKV. <p> Results: Azadirachta indica exhibited anti-CHIKV activity during pre- and post-treatment, decreasing the virus titer from 8.145 to 7.998 and 8.361 to 8.040 mean log10 FFU/ml, respectively. Calendula officinalis and Piper retrofractum exhibited anti-CHIKV activity only during post-treatment (8.361 to 8.135, 8.361 to 8.075). Moreover, molecular docking studies of phytochemicals detected in GCMS analysis of all the extracts revealed that many phytochemicals (especially F3, F5, F6, and A1) could bind to the non-structural protein (nSP2) target of CHIKV and suppress the viral replication. <p> Conclusion: The screened plants showed the ability to inhibit CHIKV infection and replication and hold potential for further investigation in developing treatments for Chikungunya.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142134907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Studies on the Preparation of a Microemulsion Formulation of Matricaria Recutita Essential Oil and the Treatment of 2,4-Dinitro-Chlorobenzene- Induced Eczema in Mice by Inhibiting Inflammation.","authors":"Dongxu Wang, Wenfei Wang, Qibin Zhang, Chang Liu, Xuefei Li, Kangrui Zuo, Yundong Xie, Xiaofei Zhang","doi":"10.2174/0115672018315617240826133041","DOIUrl":"https://doi.org/10.2174/0115672018315617240826133041","url":null,"abstract":"<p><strong>Background: </strong>Eczema, an inflammatory skin disease causing intense itching, is a function of a range of internal and external factors, impacting individuals of all ages and leading to economic loss. Inflammation is the most important manifestation of eczema, and Matricaria recutita essential oil (MREO) extracted from Matricaria recutita possesses excellent antibacterial and anti-inflammatory properties.</p><p><strong>Methods: </strong>In this study, Matricaria recutita microemulsions were prepared by the trans-phase emulsification method and their stability was determined by evaluating the relevant indexes. Establishment of 2,4-dinitro-chlorobenzene-induced AD model in mice. Detection of serum indexes of IL-6, IL-17, and TNF-α, and on pathological tissue sections, the HE staining, toluidine blue staining, immunohistochemistry, and observation were performed.</p><p><strong>Results: </strong>The study obtained optimal conditions for the preparation of microemulsion formulations of Matricaria recutita. Through quality evaluation, it was found that the microemulsion increased stability, reduced irritation, and retained anti-inflammatory activity and therapeutic effects on eczema compared to Matricaria recutita essential oil (MREO). Studies have demonstrated that microemulsion formulations of Matricaria recutita and Matricaria recutita significantly down regulate the proinflammatory factors TNF-α, IL-17, and IL-6. It was shown by hematoxylin-eosin (HE) staining that both Matricaria recutita essential oil (MREO) and Matricaria recutita microemulsion (MRME) improved the inflammatory status of eczematous skin tissues in mice. The number of mast cells expressed in the tissues was decreased in the surface-treated group, as shown by toluidine blue staining. Additionally, the number of mast cells expressed in the tissues in the surface-treated group was reduced, as demonstrated by immunohistochemistry. Furthermore, immunohistochemistry revealed that MREO and MRME have immunomodulatory effects on the tissues.</p><p><strong>Conclusion: </strong>The study showed that microemulsion formulations of Matricaria recutita may serve as a novel remedy for eczema.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142127804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Houlin Su, Zhiqiang Tu, Lin Jing, Yanling Huang, Xu Liu, Mingqing Yuan
{"title":"Investigation of Dual-Loaded Doxorubicin and Sorafenib Liposomes Co-Modified with Glycyrrhetinic Acid and Cell-Penetrating Peptide TAT.","authors":"Houlin Su, Zhiqiang Tu, Lin Jing, Yanling Huang, Xu Liu, Mingqing Yuan","doi":"10.2174/0115672018320991240903060726","DOIUrl":"https://doi.org/10.2174/0115672018320991240903060726","url":null,"abstract":"<p><strong>Background: </strong>Combining Doxorubicin (DOX) with sorafenib (SF) is a promising strategy for treating Hepatocellular Carcinoma (HCC). However, strict dosage control is required for both drugs, and there is a lack of target selectivity.</p><p><strong>Objective: </strong>This study aims to develop a novel nano-drug delivery system for the combined use of DOX and SF, aiming to reduce their respective dosages, enhance therapeutic efficacy, and improve target selectivity.</p><p><strong>Methods: </strong>DOX/SF co-loaded liposomes (LPs) were prepared using the thin-film hydration method. The liposomes were modified with 1,2-distearoyl-sn-glycero-3-phospho-ethanolamine (DSPE)- polyethylene glycol (PEG2000), DSPE-PEG1000-cell penetrating peptide TAT, and Glycyrrhetinic Acid (GA). The basic properties of the liposomes were characterized. CCK-8 cell viability assays were conducted using HepG2, MHCC97-H, and PLC cell models, and apoptosis experiments were performed using HepG2 cells to determine if this delivery system could reduce the respective dosages of DOX and SF and enhance HCC cytotoxicity. Liposome uptake experiments were performed using HepG2 cells to validate the target selectivity of this delivery system.</p><p><strong>Results: </strong>A GA/TAT-DOX/SF-LP liposomal nano drug delivery system was successfully constructed, with a particle size of 150 nm, a zeta potential of -7.9 mV, a DOX encapsulation efficiency of 92%, and an SF encapsulation efficiency of 88.7%. Cellular experiments demonstrated that this delivery system reduced the required dosages of DOX and SF, exhibited stronger cytotoxicity against liver cancer cells, and showed better target selectivity.</p><p><strong>Conclusion: </strong>A simple and referenceable liposomal nano drug delivery system has been developed for the combined application of DOX and SF in hepatocellular carcinoma treatment.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142127803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guan QingXia, Zhu MeiWei, Wang LianZhi, Chen ZhongXin, Yang FangFang, Yang ZhiPing, Dai XiaoFang, Zhao Fang Yuan
{"title":"Characterization and In vitro Release & In vivo Behavior Study of Self-Assembled Nano-Emulsion in XiaoYao Pill for Enhanced Drug Delivery.","authors":"Guan QingXia, Zhu MeiWei, Wang LianZhi, Chen ZhongXin, Yang FangFang, Yang ZhiPing, Dai XiaoFang, Zhao Fang Yuan","doi":"10.2174/0115672018303538240827102421","DOIUrl":"10.2174/0115672018303538240827102421","url":null,"abstract":"<p><strong>Background: </strong>Traditional Chinese medicine formulations often contain hydrophobic components with limited solubility and stability, leading to low oral bioavailability. Self-assembled nanoparticles (SANs) have shown promise in enhancing oral bioavailability of these components. However, whether un-decocted Chinese herbal pellets can generate SANs and the impact of SANs formed by multiple components on pharmacokinetic parameters remains unexplored.</p><p><strong>Methods: </strong>In this study, single-factor approach was employed to determine the optimal separation method of nano-emulsion phase of XiaoYao pill (N-XY). Morphological and particle size analyses confirmed the nanoscale nature of N-XY. High-performance liquid chromatography (HPLC) fingerprint analysis was conducted to compare the distribution of active ingredients among three different phases of XiaoYao pill (XY pill). In vitro release studies were performed to evaluate the release mechanism of four ingredients from N-XY. Additionally, in vivo pharmacokinetics and tissue distribution behaviors were investigated in rats.</p><p><strong>Results: </strong>N-XY exhibited uniform and stable characteristics as a water-in-oil (O/W) nano-emulsion. Fingerprint analysis identified 25 characteristic peaks and 8 key ingredients in N-XY, with the highest peak areas. In vitro release studies showed a sustained release behavior of N-XY. The pharmacokinetics study showed that the ferulic acid of N-XY had a 1.37-fold higher AUC, 1.44-fold lower Vd/F, 1.39-fold lower CL/F, and a prolonged t1/2 than A-XY, indicating enhanced bioavailability due to reduced elimination. Furthermore, the tissue distribution revealed that the levels of paeoniflorin and ferulic acid from N-XY significantly increased in liver, spleen, lungs, uterus and ovaries, exhibiting targeting characteristics.</p><p><strong>Conclusion: </strong>This study comprehensively explored the formation, characterization, and pharmacokinetics of nano-emulsion in XY pill, introducing novel perspectives and initiating preliminary research on potential SANs in un-decocted traditional Chinese medicine formulations. It also emphasized the importance of enhancing pharmacokinetics of hydrophobic components in Chinese herbal formulations and laid the foundation for future nano-formulation research for XY pill.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142127801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of Mixed Micelles for Enhancing Fenretinide Apparent Solubility and Anticancer Activity Against Neuroblastoma Cells.","authors":"Guendalina Zuccari, Alessia Zorzoli, Danilo Marimpietri, Silvana Alfei","doi":"10.2174/0115672018333862240830072536","DOIUrl":"https://doi.org/10.2174/0115672018333862240830072536","url":null,"abstract":"<p><strong>Introduction/objectives: </strong>The purpose of the study was to evaluate the suitability of mixed micelles prepared with D-α-tocopheryl polyethylene glycol succinate (TPGS) and 1,2- distearoyl-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000] (DSPE-PEG) to encapsulate the poorly soluble anticancer drug fenretinide (4-HPR).</p><p><strong>Methods: </strong>After assaying the solubilization ability of the surfactants by the equilibrium method, the micelles were prepared using the solvent casting technique starting from different 4-HPR:TPGS: DSPE-PEG w/w ratios. The resulting formulations were investigated for their stability under storage conditions and upon dilution, modelling the reaching of physiological concentrations after intravenous administration. The characterization of micelles included the determination of DL%, EE %, particle size distribution, Z-potential, and thermal analysis by DSC. The cytotoxicity studies were performed on HTLA-230 and SK-N-BE-2C neuroblastoma cells by the MTT essay.</p><p><strong>Results: </strong>The colloidal dispersions showed a mean diameter of 12 nm, negative Zeta potential, and a narrow dimensional distribution. 4-HPR was formulated in the mixed micelles with an encapsulation efficiency of 88% and with an increment of the apparent solubility of 363-fold. The 4-HPR entrapment remained stable up to the surfactants' concentration of 2.97E-05 M. The loaded micelles exhibited a slow-release behaviour, with about 28% of the drug released after 24 h. On the most resistant SK-N-BE-2C cells, the encapsulated 4-HPR was significantly more active than free 4-HPR in reducing cell viability.</p><p><strong>Conclusion: </strong>Loaded micelles demonstrated their suitability as a new adjuvant tool potentially useful for the treatment of neuroblastoma.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142127802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Iosif Mikhel, Elena Bakhrushina, Olga Stepanova, Sofiya Prilepskaya, Dmitriy Kosenkov, Anastasia Belyatskaya, Grigory Evzikov, Natalia Demina, Ivan Krasnyuk, Ivan Krasnyuk
{"title":"Ribavirin in Modern Antitumor Therapy: Prospects for Intranasal Administration.","authors":"Iosif Mikhel, Elena Bakhrushina, Olga Stepanova, Sofiya Prilepskaya, Dmitriy Kosenkov, Anastasia Belyatskaya, Grigory Evzikov, Natalia Demina, Ivan Krasnyuk, Ivan Krasnyuk","doi":"10.2174/0115672018305548240614113451","DOIUrl":"https://doi.org/10.2174/0115672018305548240614113451","url":null,"abstract":"<p><p>Ribavirin has been used as an antiviral agent to treat a variety of viral infections since the 1970s. Over the past few decades, studies have been conducted on the pharmacology of ribavirin, and the possibility of its use in new indications has been explored. According to the results of a number of studies, ribavirin efficacy in the therapy of malignant neoplasms of various genesis has been proven. Furthermore, due to the complexity of brain tumor therapy using surgical methods, targeted delivery of ribavirin to the brain becomes a promising alternative to existing treatment methods. Targeting of active pharmaceutical ingredient (API) to the brain tumor is achieved by intranasal drug delivery via a Nose-to-Brain mechanism. In addition, using this delivery mechanism, it is possible to reach the brain while bypassing the blood-brain barrier (BBB), thus avoiding the effects of the first passage through the liver. Despite the significant advantages of the method, there are limiting factors to its application - mucociliary clearance, which aims to remove foreign bodies from the surface of the nasal mucosa. In situ, systems are able to reduce the intensity of interfering factors on API and allow the achievement of maximum bioavailability during intranasal administration.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142083027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiangtao Su, Xue Chen, Fan Ye, Chuchu Liu, Jiahao Liang, Xuejun Zhang, Xiaoxia Guo
{"title":"Celastrol Derivative/DOX Co-Assembled Nanodrug for Enhanced Antitumor Therapy.","authors":"Jiangtao Su, Xue Chen, Fan Ye, Chuchu Liu, Jiahao Liang, Xuejun Zhang, Xiaoxia Guo","doi":"10.2174/0115672018298512240819101159","DOIUrl":"https://doi.org/10.2174/0115672018298512240819101159","url":null,"abstract":"<p><strong>Background: </strong>Multidrug resistance (MDR) is a key challenge in clinical chemotherapy. The combination of drugs can effectively reverse multi-drug resistance.</p><p><strong>Objective: </strong>In this study, doxorubicin (DOX) was capsulated into nanoparticles formed by an amphiphilic PEGylated-poly (α-lipoic acid)-methanamide analogue of celastrol (mPEG-PαLA-CEN) prodrug polymer. CEN was linked to the branched chain of poly (α-lipoic acid) by forming ester bonds. DOX was physically trapped inside the nanoparticles via electrostatic interaction. Both drugs can be simultaneously released in response to low pH and high GSH in order to overcome DOX resistance.</p><p><strong>Methods: </strong>The chemical structure of the mPEG-PαLA-CEN-DOX NPs was confirmed through 1H NMR, FT-IR spectroscopy, UV-Vis spectrum, DLS, and TEM. Drug-loading content, efficacy, and drug release were measured using HPLC. Cell toxicity was examined using an MTT assay.</p><p><strong>Results: </strong>CEN/DOX-loaded nanoparticles were found to have spherical shapes with diameters of around 229.7 nm. The NPs exhibited high biocompatibility and released 92% DOX and 71.8% CEN in response to low pH and high GSH of tumor microenvironments. As dual drug-loaded nanoparticles, the efficacy of mPEG-PαLA-CEN-DOX NPs against tumor cell lines in vitro was enhanced for both MCF-7 and MCF-7/ADR compared to free DOX. Compared to free DOX, the IC50 of mPEG-PαLA-CEN-DOX NPs reduced from 46.10 μM to 8.36 μM for the MCF-7/ADR cell line.</p><p><strong>Conclusion: </strong>In conclusion, this study demonstrated that PEGylated poly (α-lipoic acid)-CEN copolymers can be used not only as biocompatible, stimulation-responsive anticancer drug nanocarriers but also as chemosensitizers to overcome multidrug resistance, which provide a theoretical base for clinical application of CEN/DOX nanodrug.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142083026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanocrystals: Versatile Platform for Traditional Chinese Medicine Delivery.","authors":"Chuanyu Ren, Yue Gao, Yeqi Huang, Siyuan Peng, Xuan Zhang, Weijie Wang, Chuanbin Wu, Xin Pan, Zhengwei Huang","doi":"10.2174/0115672018322054240813112111","DOIUrl":"https://doi.org/10.2174/0115672018322054240813112111","url":null,"abstract":"<p><p>The medicinal value of Chinese medicines has been recognized since ancient times, and they have also been used to treat various diseases. However, in-depth studies on the active ingredients of Chinese medicines have shown that many of them suffer from poor water-solubility, stability, and bioavailability, which has severely limited their further development. The advent of nanomedicine represents a novel direction and paradigm for addressing these challenges. Particularly, within the framework of nanocrystal technology, enhancements in the water solubility, stability, and bioavailability of Chinese medicines are expected to significantly improve the therapeutic efficiency. This advancement also holds promise for unlocking new therapeutic capabilities. Nanocrystals offer significant advantages in oral, intravenous, intranasal and targeted delivery. The drug loading principle is \"all in one\", with hydrophobic-drug-in and hydrophilic-drug-out and stabilization by amphiphilic agents. Nanocrystal technology in traditional Chinese medicine (TCM) holds extensive application potential. Continuous refinement of preparation techniques, sound safety assessments, and the promotion of large-scale production are anticipated to augment its pivotal role in TCM formulations, thereby creating novel opportunities for clinical drug therapy.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142020080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Conjugated Linoleic Acid in Cancer Therapy.","authors":"Jeneesha George, Asit Ranjan Ghosh","doi":"10.2174/0115672018325362240811164655","DOIUrl":"https://doi.org/10.2174/0115672018325362240811164655","url":null,"abstract":"<p><p>Conjugated Linoleic Acid (CLA) is a polyunsaturated dietary fatty acid. Probiotics can biohydrogenate CLA with multiple health benefits, especially in cancer treatment. In vitro, in vivo, and clinical studies have confirmed CLA isomers to possess anti-cancer activity. CLA has demonstrated its potential as an alternative treatment for cancer and also used as an adjuvant to reduce the side effects of existing treatment methods. The mechanism of the anticancer activity of CLA is still not clear; however, it may involve intervention with the cell cycle and modulation of gene expression. A greater potential of CLA for cancer treatment has been supported by more and more clinical trials to evaluate its potential. Some advanced technologies are in progress to overcome the flaws of current methods and enhance the microbial production of CLA. In conclusion, nutritional enrichment as a functional food and direct consumption of CLA may contribute to cancer management.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141989875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}