Current drug delivery最新文献

筛选
英文 中文
Lactoferrin-Conjugated Nanocarriers for Transformative Strategies in Cancer Management: New Insights on Breast Cancer Therapy. 乳铁蛋白结合纳米载体在癌症管理中的变革策略:乳腺癌治疗的新见解。
Current drug delivery Pub Date : 2025-03-13 DOI: 10.2174/0115672018351146250307083901
Rakesh Pahwa, Sanskriti Saini, Gulshan Sharma, Rohil Panwar, Hardeep Singh Tuli, Neeraj Mishra, Sukriti Vishwas, Thakur Gurjeet Singh, Gaurav Gupta, Harish Dureja, Sachin Kumar Singh
{"title":"Lactoferrin-Conjugated Nanocarriers for Transformative Strategies in Cancer Management: New Insights on Breast Cancer Therapy.","authors":"Rakesh Pahwa, Sanskriti Saini, Gulshan Sharma, Rohil Panwar, Hardeep Singh Tuli, Neeraj Mishra, Sukriti Vishwas, Thakur Gurjeet Singh, Gaurav Gupta, Harish Dureja, Sachin Kumar Singh","doi":"10.2174/0115672018351146250307083901","DOIUrl":"https://doi.org/10.2174/0115672018351146250307083901","url":null,"abstract":"<p><p>Cancer represents a diverse and complex spectrum of diseases characterized by the abnormal growth and proliferation of cells, establishing a formidable global health challenge. Within the array of diverse cancers, breast cancer arises as one of the primary contributors to cancer-related fatalities in females. Breast cysts, thickenings, alterations in breast size or form, etc., are all prevalent and well-known signs of breast cancer. Despite remarkable progression in cancer research and the abundance of potent drugs, the effectiveness of conventional therapy is still hindered by various complications. In this avenue, nanocarriers present considerable promise for delivering therapeutics to cancerous cells, however, still numerous challenges persist in achieving successful targeted drug delivery and localization. Recent progress has emphasized the utilization of ligand-functionalized nanocarriers to enhance the delivery at target tissues and improve uptake by cancer cells. This approach contributes to increased accuracy and efficacy, which ultimately leads to enhanced patient outcomes. Lactoferrin, a multifunctional glycoprotein, is currently receiving significant attention as a promising ligand for targeted drug delivery in cancerous cells, especially breast cancer cells. This review provides new insight into ligand-targeted therapy, emphasizing the key benefits and notable features of utilizing lactoferrin as a targeting ligand for delivering drug-loaded nanocarriers to tumor sites.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143723042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spray-Dried Inhalable Favipiravir Dry Powder Formulation for Influenza Therapy: Preparation and In vivo Evaluation. 用于流感治疗的喷雾干燥吸入法匹拉韦干粉制剂:制备和体内评价。
Current drug delivery Pub Date : 2025-03-12 DOI: 10.2174/0115672018351326250306040551
Xinyu Zhang, Baogang Wang, Likun Xu, Liangliang Zhao, Lili Zhang, Zhuchun Bei, Dongna Zhang, Dongsheng Zhou, Meng Lv, Yabin Song
{"title":"Spray-Dried Inhalable Favipiravir Dry Powder Formulation for Influenza Therapy: Preparation and In vivo Evaluation.","authors":"Xinyu Zhang, Baogang Wang, Likun Xu, Liangliang Zhao, Lili Zhang, Zhuchun Bei, Dongna Zhang, Dongsheng Zhou, Meng Lv, Yabin Song","doi":"10.2174/0115672018351326250306040551","DOIUrl":"https://doi.org/10.2174/0115672018351326250306040551","url":null,"abstract":"<p><strong>Background: </strong>Influenza, a seasonal infectious disease, has consistently posed a formidable challenge to global health in recent years. Favipiravir, an RNA-dependent RNA polymerase inhibitor, serves as an anti-influenza medication, currently administered solely in oral form for clinical use. However, achieving an effective therapeutic outcome often necessitates high oral doses, which can be accompanied by adverse effects and suboptimal patient adherence.</p><p><strong>Objective: </strong>To enhance favipiravir delivery efficiency and potentially mitigate dosage-related side effects, this study aimed to formulate favipiravir as a dry powder for pulmonary inhalation, facilitating direct targeting of lung tissue.</p><p><strong>Methods: </strong>Employing L-leucine as a carrier, favipiravir was prepared as an inhalable dry powder through the spray-drying technique. A 3x3 full-factorial design approach was adopted to optimize the formulation. The optimized spray-dried powder underwent comprehensive characterization, including assessments of its morphology, crystallinity, flowability, and aerodynamic particle size distribution. The therapeutic efficacy of the powder was evaluated in a mouse model infected with the H1N1 influenza virus.</p><p><strong>Results: </strong>The formulated powder demonstrated good aerosol properties, rendering it suitable for inhalation delivery. Its therapeutic efficacy was demonstrated in the mouse model, where it exhibited marked protective effects against the virus in vivo after 5 days of treatment. Notably, the inhalation dose required (15 mg/kg/day) was significantly lower than the oral gavage dose (150 mg/kg/day), indicating that substantially reduced doses, when administered via inhalation, were sufficient to confer protection against mortality in mice.</p><p><strong>Conclusion: </strong>The findings underscore the potential of inhalation therapy using spray-dried favipiravir powder as an effective and efficient treatment option for influenza, offering the promise of reduced dosing requirements and associated adverse effects.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143618021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomimetic Brain-Targeted Drug Delivery System for the Treatment of Brain Diseases. 治疗脑部疾病的仿生脑靶向给药系统。
Current drug delivery Pub Date : 2025-03-10 DOI: 10.2174/0115672018373397250303050206
Yaomin Tan, Ziyan Tang, Yizhi Zhang, Lina Du, Fan Jia
{"title":"Biomimetic Brain-Targeted Drug Delivery System for the Treatment of Brain Diseases.","authors":"Yaomin Tan, Ziyan Tang, Yizhi Zhang, Lina Du, Fan Jia","doi":"10.2174/0115672018373397250303050206","DOIUrl":"https://doi.org/10.2174/0115672018373397250303050206","url":null,"abstract":"<p><p>The blood-brain barrier (BBB) effectively blocks most drugs from entering the central nervous system, posing significant challenges to the treatment of brain diseases, such as cerebrovascular disorders, neurodegenerative conditions, and brain tumors. In recent years, biomimetic braintargeted drug delivery systems (BBDDSs) have garnered substantial attention for their potential to overcome these obstacles. BBDDSs employ natural biological materials in combination with synthetic nanoparticles to create delivery systems that mimic endogenous biological processes, enabling the penetration of the BBB and facilitating brain-targeting efficacy. This paper reviews the preparation of BBDDS using cell membranes, proteins, lipoproteins, peptides, nanovesicles, and viruses, introduces their applications in various diseases, and outlines current challenges and future prospects for the use of BBDDS in therapeutic interventions.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143607649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancements and Challenges of Plant-derived Extracellular Vesicles in Anti-Cancer Strategies and Drug Delivery. 植物源细胞外囊泡在抗癌策略和药物输送方面的进展与挑战。
Current drug delivery Pub Date : 2025-03-07 DOI: 10.2174/0115672018367056250227074828
Fen Zhang, Xiao Liang, Hao Liu, Umer Anayyat, Zhuohang Yang, Xiaomei Wang
{"title":"Advancements and Challenges of Plant-derived Extracellular Vesicles in Anti-Cancer Strategies and Drug Delivery.","authors":"Fen Zhang, Xiao Liang, Hao Liu, Umer Anayyat, Zhuohang Yang, Xiaomei Wang","doi":"10.2174/0115672018367056250227074828","DOIUrl":"https://doi.org/10.2174/0115672018367056250227074828","url":null,"abstract":"<p><strong>Background: </strong>Plant-derived extracellular vesicles (PDEVs) are vital for intercellular material exchange and information transfer. They significantly regulate cellular functions, tissue repair, and self-defense mechanisms.</p><p><strong>Objective: </strong>This review summarizes the formation pathways, composition, and potential applications of PDEVs in anti-tumor research and drug delivery systems.</p><p><strong>Methods: </strong>We conducted a literature search using keywords such as \"plant-derived extracellular vesicles,\" \"exosomes,\" \"drug delivery,\" \"isolation and purification,\" \"stability,\" \"anti-tumor,\" and \"tumor therapy\" in databases including PubMed, Web of Science, and Scopus. We examined studies on the formation pathways of PDEVs, including fusion of multivesicular bodies with the plasma membrane, exosome-positive organelles, and vacuole release. We also reviewed isolation and purification techniques critical for studying their biological functions. Furthermore, we analyzed research on the application of PDEVs in cancer therapy, focusing on their inhibitory effects in various cancer models and their role as carriers in drug delivery systems.</p><p><strong>Results: </strong>PDEVs have demonstrated potential in anti-tumor research, particularly with vesicles from plants like tea, garlic, and Artemisia annua showing inhibitory effects in breast, lung, and gastric cancer models. Additionally, PDEVs serve as effective carriers in drug delivery systems, offering possibilities for developing ideal therapeutic solutions.</p><p><strong>Conclusion: </strong>While PDEVs show promise in cancer treatment and drug delivery, challenges such as standardization, storage stability, and elucidation of action mechanisms remain. Further research is needed to overcome these challenges and advance the clinical translation of PDEVs.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143589080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bibliometric and Visualization Analysis of Research on Exosomes as Drug Delivery Systems (2008-2023). 外泌体作为药物传递系统研究的文献计量学和可视化分析(2008-2023)。
Current drug delivery Pub Date : 2025-02-20 DOI: 10.2174/0115672018358562250213113042
Wei Xiang, Qisong Shang, Zhoujun Zhu, Yuanyuan Wu, Xinghua Song
{"title":"Bibliometric and Visualization Analysis of Research on Exosomes as Drug Delivery Systems (2008-2023).","authors":"Wei Xiang, Qisong Shang, Zhoujun Zhu, Yuanyuan Wu, Xinghua Song","doi":"10.2174/0115672018358562250213113042","DOIUrl":"https://doi.org/10.2174/0115672018358562250213113042","url":null,"abstract":"<p><strong>Objective: </strong>Exosomes are unique bio-nanomaterials possessing significant value and potential for drug delivery systems. However, to date, no bibliometric studies in this field have been reported. Our aim is to explore the research hotspots and trends of exosome drug-carrying systems across various medical fields through bibliometric analyses.</p><p><strong>Methods: </strong>Articles and reviews related to \"exosome\" and \"drug delivery\" are retrieved from the Web of Science Core Collection. VOSviewer, CiteSpace, Scimago Graphica, and Origin 2021 are employed for bibliometric analyses.</p><p><strong>Results: </strong>A total of 771 articles from 60 countries, such as China and the United States, are included. The number of papers concerning exosomal drug delivery systems has been increasing yearly. The main research institutions are the Chinese Academy of Sciences, Shanghai Jiao Tong University, Huazhong University of Science and Technology, Fudan University, and Sichuan University. The Journal of Controlled Release is the most prevalent and frequently cited journal in this field. These papers are authored by 247 individuals, with Ando, Hidenori having the highest number of publications and Alvarez-Erviti L receiving the most citations. \"Extracellular vesicles\", \"drug delivery\", \"in vitro\", \"nanoparticles\", \"cells\", \"delivery\", and \"mesenchymal stem cells\" are the principal keywords for this hotspot.</p><p><strong>Conclusion: </strong>This pioneering bibliometric study offers a comprehensive overview of the research trends and advancements in exosomal drug delivery systems in medicine over the past fifteen years.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143470217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Nanocarrier Enhances the Anti-Liver Cancer Efficacy of Mitoxantrone: An Acidic Panax notoginseng Polysaccharide III. 纳米载体增强米托蒽醌的抗肝癌作用:酸性三七多糖III。
Current drug delivery Pub Date : 2025-02-18 DOI: 10.2174/0115672018351085250212080829
Yuzhen Ding, Panpan Wei, Die Xia, Mengyue Deng, Yingxi Zhang, Menglian Li, Tong Chen, Zijun Yan
{"title":"A Nanocarrier Enhances the Anti-Liver Cancer Efficacy of Mitoxantrone: An Acidic Panax notoginseng Polysaccharide III.","authors":"Yuzhen Ding, Panpan Wei, Die Xia, Mengyue Deng, Yingxi Zhang, Menglian Li, Tong Chen, Zijun Yan","doi":"10.2174/0115672018351085250212080829","DOIUrl":"https://doi.org/10.2174/0115672018351085250212080829","url":null,"abstract":"<p><strong>Introduction: </strong>The incidence and mortality rates of liver cancer are high; therefore, developing new drug delivery systems with good biocompatibility and targeting has become a research hotspot.</p><p><strong>Methods: </strong>Mitoxantrone hydrochloride (MH) loaded in acidic Panax notoginseng polysaccharide III nanoparticles (MANPs) was prepared using electrostatic adsorption. This was achieved by loading MH in acidic Panax notoginseng polysaccharide III (APPN III), a natural compound that exhibits anti-tumor activity. Response surface methodology was used to determine the parameters for the best formulation.</p><p><strong>Results: </strong>Fourier-transform infrared spectroscopy and differential scanning calorimetry indicated that MH in MANPs was amorphous and exhibited good encapsulation efficiency in the carrier. Findings from dynamic dialysis confirmed that MANPs exhibited slow drug release at pH 6.8 and over the pH range of 7.2-7.4. In vitro experiments confirmed the anti-tumor effects of MANPs on H22 cells based on the inhibition of cell proliferation and an increase in apoptosis. MANPs also demonstrated an obvious anti-tumor effect without any toxicity in H22 tumor-bearing mice. This effect could be attributed to APPN III enhancing the immune system and exerting a synergistic anti-tumor effect in combination with MH, thereby alleviating MH-induced damage to the immune system in H22 tumorbearing mice.</p><p><strong>Conclusion: </strong>As a nano-carrier prepared using natural resources, APPN III shows immense potential in the field of drug delivery and could serve as a novel option for the effective delivery of chemotherapeutic drugs.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143461331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Garlic Extract-Mediated SPIONs-Incorporated Nanohydrogel for Enhanced Wound Healing Potential. 大蒜提取物介导的SPIONs-Incorporated纳米水凝胶增强伤口愈合潜力。
Current drug delivery Pub Date : 2025-02-14 DOI: 10.2174/0115672018263115250212075106
Ankita Parmanik, Anindya Bose, Lipsa Leena Panigrahi, Rudra Narayan Sahoo, Amit Kumar Nayak
{"title":"Garlic Extract-Mediated SPIONs-Incorporated Nanohydrogel for Enhanced Wound Healing Potential.","authors":"Ankita Parmanik, Anindya Bose, Lipsa Leena Panigrahi, Rudra Narayan Sahoo, Amit Kumar Nayak","doi":"10.2174/0115672018263115250212075106","DOIUrl":"https://doi.org/10.2174/0115672018263115250212075106","url":null,"abstract":"<p><strong>Background: </strong>Superparamagnetic iron oxide nanoparticles (SPIONs) with a specific size range of 15-70 nm are usually considered nontoxic substances with superior antibacterial activity, making them strong candidates for wound dressing applications. Although SPIONs have significant antibacterial activity, their ability to treat infected wounds still needs to be explored.</p><p><strong>Objective: </strong>The objective of the present study was to synthesize antibacterial SPIONs (G-SPIONs) using aqueous garlic extract as a bioreducing agent and evaluate the synthesized G-SPIONsincorporated nanohydrogel for wound healing potential.</p><p><strong>Methods: </strong>Synthesized G-SPIONs were characterized by SEM, zeta potential, VSM, FTIR, etc. The antibacterial effects of G-SPIONs were evaluated against S. epidermidis, S. aureus, and E. coli, as compared to garlic extract. The synthesized G-SPIONs were further incorporated into the chitosanbased hydrogel (ChiG-SPIONs) to assess their wound healing potential using the in vivo rat model.</p><p><strong>Results: </strong>The synthesized G-SPIONs had a positive surface charge of +3.82 mV and were spherical, with sizes ranging between 20-80 nm. Additionally, their hemo-biocompatible nature was confirmed by hemolysis assay. The magnetic nature of synthesized G-SPIONs was investigated using a vibrating sample magnetometer, and the saturation magnetization (Ms) was found to be 53.793emu/g. The in vivo wound healing study involving rats revealed a wound contraction rate of around 95% with improved skin regeneration. The histopathological examination demonstrated a faster rate of reepithelialization with regeneration of blood vessels and hair follicles.</p><p><strong>Conclusion: </strong>The results demonstrated that the developed ChiG-SPIONs could be a novel and efficient nanohydrogel dressing material for the effective management of wound infections.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143434861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication and Evaluation of Hyaluronic Acid Coated Albumin Nanoparticles for Delivery of Gemcitabine. 用于递送吉西他滨的透明质酸包膜白蛋白纳米颗粒的制备和评价。
Current drug delivery Pub Date : 2025-02-12 DOI: 10.2174/0115672018317615240926163652
Shweta Paroha, Ravindra Dhar Dubey, Juhi Verma, Vikas Jain, Saleem Akbar, Ashwini Kumar Mishra, S L Neha, Laxmi Rani, Aman Kumar Mahto, Parvat Kumar Sahoo, Rikeshwer Prasad Dewangan
{"title":"Fabrication and Evaluation of Hyaluronic Acid Coated Albumin Nanoparticles for Delivery of Gemcitabine.","authors":"Shweta Paroha, Ravindra Dhar Dubey, Juhi Verma, Vikas Jain, Saleem Akbar, Ashwini Kumar Mishra, S L Neha, Laxmi Rani, Aman Kumar Mahto, Parvat Kumar Sahoo, Rikeshwer Prasad Dewangan","doi":"10.2174/0115672018317615240926163652","DOIUrl":"https://doi.org/10.2174/0115672018317615240926163652","url":null,"abstract":"<p><p>Gemcitabine (Gem) is a well-known antineoplastic drug used for several solid tumors. The clinical application of gem is hampered owing to non-selectivity, short half-life, and drug resistance, which necessitate the development of a suitable novel formulation that can selectively target cancer sites. In the present work, Gem-loaded bovine serum albumin nanoparticles (Gem-BSANPs) have been prepared and coated with hyaluronic acid (HA-Gem-BSANPs). Particle size, zeta potential, TEM, and DSC analysis characterized the developed NPs. The mean particle size, PDI, and zeta potentials were observed to be 120.9 ± 5.87 vs 144.7 ± 5.67 and 28.66 ± 1.10 vs -45.72 ± 3.24, for Gem-BSANPs and HA-Gem-BSANPs, respectively. Interestingly, HA-coated Gem-BSANPs were found higher cytotoxic against A549 cell lines with better killing kinetics and mitochondrial membrane loss due to overexpression of CD44. The present work demonstrated that HA-Gem-BSANPs could be a potential strategy to improve the therapeutic efficacy of gem by selectively targeting to the tumor site.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143411971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
mRNA Vaccines: Unlocking Potential, Exploring Applications, and Envisioning Future Horizons. mRNA疫苗:释放潜力,探索应用,展望未来。
Current drug delivery Pub Date : 2025-01-24 DOI: 10.2174/0115672018320938241121075859
Gaurav Mishra, Sunny Rathee, Munish Garg, Umesh K Patil
{"title":"mRNA Vaccines: Unlocking Potential, Exploring Applications, and Envisioning Future Horizons.","authors":"Gaurav Mishra, Sunny Rathee, Munish Garg, Umesh K Patil","doi":"10.2174/0115672018320938241121075859","DOIUrl":"https://doi.org/10.2174/0115672018320938241121075859","url":null,"abstract":"<p><p>In recent years, there have been notable strides in developing mRNA vaccines, resulting in the creation of potent immunizations against diverse diseases. This review examines the most recent advancements in this field, focusing on their implications for future vaccine development. The pursuit of heightened vaccine efficacy is investigated through cutting-edge methods in adjuvant selection, delivery system optimization, and antigen selection. The review also explores the potential for personalized vaccines based on genetic profiles, along with the latest techniques to ensure vaccine stability and extend shelf life. Highlighting the versatility of mRNA vaccines in addressing emerging infectious diseases and their variations, the review underscores the significance of swift response plans and advanced technologies to counter evolving viral mutations. In summary, this in-depth analysis emphasizes how mRNA vaccines hold transformative potential in reshaping both therapeutic and preventive strategies. Notable achievements include the creation of extremely potent mRNA vaccinations against the SARS-CoV-2 virus, resulting in the COVID-19 pandemic. Ongoing efforts to address challenges like long-term immune protection and increase the effectiveness and stability of mRNA vaccines are also discussed. This review's main goal is to provide a thorough summary of current advancements in mRNA vaccine technology while exploring how these advances may impact future approaches to treating and preventing different diseases.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143049404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Advances in Nanotherapeutics and Theranostics for Squamous Cell Carcinoma: A Comprehensive Review. 纳米治疗和治疗鳞状细胞癌的最新进展:综述。
Current drug delivery Pub Date : 2025-01-24 DOI: 10.2174/0115672018342513241230061704
Neeraj Sharma, Abhiram Kumar, Sharda Sambhakar, Daksh Bhatia, Sahil Hussain, Mohd Mursal, Bishambar Singh, Kumar Pranav Narayan
{"title":"Recent Advances in Nanotherapeutics and Theranostics for Squamous Cell Carcinoma: A Comprehensive Review.","authors":"Neeraj Sharma, Abhiram Kumar, Sharda Sambhakar, Daksh Bhatia, Sahil Hussain, Mohd Mursal, Bishambar Singh, Kumar Pranav Narayan","doi":"10.2174/0115672018342513241230061704","DOIUrl":"https://doi.org/10.2174/0115672018342513241230061704","url":null,"abstract":"<p><p>Recent advancements in nanotherapeutics have revolutionized cancer treatment through the integration of diagnostic and therapeutic modalities, known as theranostics. This critical review examines the current landscape of nanotherapeutics for various cancers, such as bladder and head and neck squamous cell carcinoma, highlighting current advancements in nanotherapeutics and challenges. Key approaches discussed include biomimetic smart nanocarriers, polymeric smart nanocarriers, inorganic-based smart nanocarriers, and nanorobots. Furthermore, diverse nanomaterials have been explored in theranostics, including liposomes, polymeric nanoparticles, and inorganic nanoparticles such as quantum dots and mesoporous silica nanoparticles. Furthermore, the integration of imaging techniques such as surface-enhanced Raman scattering (SERS) and positron emission tomography (PET) with therapeutic nanoparticles has been analyzed for potential clinical applications.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143049434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信