Current drug delivery最新文献

筛选
英文 中文
Transfersomes: Recent Advances, Mechanisms, Exhaustive Applications, Clinical Trials, and Patents. 转运体:最新进展、机制、详尽应用、临床试验和专利。
Current drug delivery Pub Date : 2025-01-01 DOI: 10.2174/0115672018295038240209055444
Deeksha Manchanda, Manish Makhija, Parijat Pandey, Manu Sharma
{"title":"Transfersomes: Recent Advances, Mechanisms, Exhaustive Applications, Clinical Trials, and Patents.","authors":"Deeksha Manchanda, Manish Makhija, Parijat Pandey, Manu Sharma","doi":"10.2174/0115672018295038240209055444","DOIUrl":"10.2174/0115672018295038240209055444","url":null,"abstract":"<p><p>A feasible nano transdermal delivery system generally intends to have specific ideal and distinct characteristics primarily for safety, clinical efficacy, and boosted therapeutic index. The delivery of drugs, particularly macromolecules, across the skin is one of the most strenuous obstacles in front of pharmaceutical scientists. Technology advancement has provided some opportunities to overcome this difficulty by utilising microneedle arrays, ablation, laser methods etc. However, associated uneasiness, painful sensation, and higher cost of therapies limit their day-today use. Therefore, researchers have focused on developing alternate carriers like ultra-deformable liposomes, also termed transfersomes. Transfersomes are composed of a lipid bilayer containing phospholipids and an edge activator to facilitate drug delivery via transdermal route to deeper layers of skin and for higher systemic bioavailability. The bilayer structure of transfersomes allows ease of encapsulation of both hydrophilic and lipophilic drugs with higher permeability than typical liposomes. Therefore, among various vesicular systems, transfersomes have developed much interest in targeted and sustained drug delivery. The current review primarily emphasizes critical aspects of transfersomes, including their applications, clinical trial studies, and patents found in various literature sources.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":"215-230"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139935127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overcoming Skin Barrier with Transfersomes: Opportunities, Challenges, and Applications. 转运体克服皮肤屏障:机遇、挑战和应用。
Current drug delivery Pub Date : 2025-01-01 DOI: 10.2174/0115672018272012231213100535
Bhupendra Dixena, Rashmi Madhariya, Anupama Panday, Alpana Ram, Akhlesh K Jain
{"title":"Overcoming Skin Barrier with Transfersomes: Opportunities, Challenges, and Applications.","authors":"Bhupendra Dixena, Rashmi Madhariya, Anupama Panday, Alpana Ram, Akhlesh K Jain","doi":"10.2174/0115672018272012231213100535","DOIUrl":"10.2174/0115672018272012231213100535","url":null,"abstract":"<p><strong>Background: </strong>Transdermal drug delivery systems (TDDS) offer several advantages over traditional methods such as injections and oral administration. These advantages include preventing first-pass metabolism, providing consistent and sustained activity, reducing side effects, enabling the use of short half-life drugs, improving physiological response, and enhancing patient convenience. However, the permeability of skin poses a challenge for TDDS, as it is impermeable to large molecules and hydrophilic drugs but permeable to small molecules and lipophilic drug. To overcome this barrier, researchers have investigated vesicular systems, such as transfersomes, liposomes, niosomes, and ethosomes. Among these vesicular systems, transfersomes are particularly promising for noninvasive drug administration due to their deformability and flexible membrane. They have been extensively studied for delivering anticancer drugs, insulin, corticosteroids, herbal medicines, and NSAIDs through the skin. Transfersomes have demonstrated efficacy in treating skin cancer, improving insulin delivery, enhancing site-specific corticosteroid delivery, and increasing the permeation and therapeutic effects of herbal medicines. They have also been effective in delivering pain relief with minimal side effects using NSAIDs and opioids. Transfersomes have been used for transdermal immunization and targeted drug delivery, offering site-specific release and minimizing adverse effects. Overall, transfersomes are a promising approach for transdermal drug delivery in various therapeutic applications.</p><p><strong>Objective: </strong>The aim of the present review is to discuss the various advantages and limitations of transfersomes and their mechanism to penetration across the skin, as well as their application for the delivery of various drugs like anticancer, antidiabetic, NSAIDs, herbal drugs, and transdermal immunization.</p><p><strong>Methods: </strong>Data we searched from PubMed, Google Scholar, and ScienceDirect.</p><p><strong>Results: </strong>In this review, we have explored the various methods of preparation of transfersomes and their application for the delivery of various drugs like anticancer, antidiabetic, NSAIDs, herbal drugs, and transdermal immunization.</p><p><strong>Conclusion: </strong>In comparison to other vesicular systems, transfersomes are more flexible, have greater skin penetration capability, can transport systemic medicines, and are more stable. Transfersomes are capable of delivering both hydrophilic and hydrophobic drugs, making them suitable for transdermal drug delivery. The developed transfersomal gel could be used to improve medicine delivery through the skin.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":"160-180"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139099457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Vision Correction to Drug Delivery: Unraveling the Potential of Therapeutic Contact Lens. 从视力矫正到药物输送:揭示治疗性隐形眼镜的潜力。
Current drug delivery Pub Date : 2025-01-01 DOI: 10.2174/0115672018270396231213074746
Ankush Saini, Mohit Sharma, Indu Singh, Rajan Swami
{"title":"From Vision Correction to Drug Delivery: Unraveling the Potential of Therapeutic Contact Lens.","authors":"Ankush Saini, Mohit Sharma, Indu Singh, Rajan Swami","doi":"10.2174/0115672018270396231213074746","DOIUrl":"10.2174/0115672018270396231213074746","url":null,"abstract":"<p><p>Contact lenses (CLs) have become an essential tool in ocular drug delivery, providing effective treatment options for specific eye conditions. In recent advancements, Therapeutic CLs (TCLs) have emerged as a promising approach for maintaining therapeutic drug concentrations on the eye surface. TCLs offer unique attributes, including prolonged wear and a remarkable ability to enhance the bioavailability of loaded medications by more than 50%, thus gaining widespread usage. They have proven beneficial in pain management, medication administration, corneal healing, and protection. To achieve sustained drug delivery from TCLs, researchers are exploring diverse systems, such as polymeric nanoparticulate systems, lipidic systems, and the incorporation of agents like vitamin E or rate-limiting polymers. However, despite breakthrough successes, certain challenges persist, including ensuring drug stability during processing and manufacturing, controlling release kinetics, and biomaterial interaction, reducing protein adhesion, and addressing drug release during packaging and storage etc. While TCLs have shown overall success in treating corneal and ocular surface disorders, careful consideration of potential issues and contraindications is vital. This review offers an insightful perspective on the critical aspects that need to be addressed regarding TCLs, with a specific emphasis on their advantages and limitations.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":"140-159"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139428216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comprehensive Review on Polyphenols based Nanovesicular System for Topical Delivery. 基于多酚的局部给药纳米囊泡系统综述。
Current drug delivery Pub Date : 2025-01-01 DOI: 10.2174/0115672018265118231213094410
Anshu Singh, Zeeshan Fatima, Dipti Srivastava
{"title":"A Comprehensive Review on Polyphenols based Nanovesicular System for Topical Delivery.","authors":"Anshu Singh, Zeeshan Fatima, Dipti Srivastava","doi":"10.2174/0115672018265118231213094410","DOIUrl":"10.2174/0115672018265118231213094410","url":null,"abstract":"<p><strong>Background: </strong>Polyphenols are naturally occurring compounds having more than one hydroxy functional group. They are ubiquitous secondary plant metabolites possessing a wide range of pharmacological activity. Brightly colored fruits and vegetables are the natural source of polyphenols. Majorly, they possess antioxidant, anti-inflammatory and antimicrobial properties which make them suitable candidates to target skin related disorders.</p><p><strong>Objective: </strong>This study is focused to explore the potential of polyphenols loaded nanovesicles for skin related disorders. The aim of the study is to review the applicability and efficacy of different vesicular systems encapsulated with various classes of polyphenols for skin related disorders, thus opening the opportunity for future studies based on these drug delivery systems.</p><p><strong>Methods: </strong>Web of Science, PubMed, Scopus database, and the search engine Google Scholar were accessed for the literature search. The results were then filtered based on the titles, abstracts, and accessibility of the complete texts.</p><p><strong>Results: </strong>The expository evaluation of the literature revealed that various nanovesicles like liposomes, niosomes, ethosomes and transferosomes incorporating polyphenol have been formulated to address issues pertaining to delivery across the skin. These developed nano vesicular systems have shown improvement in the physicochemical properties and pharmacological action.</p><p><strong>Conclusion: </strong>Polyphenol based nano-vesicular formulations have proved to be an effective system for topical delivery and henceforth, they might curtail the use of other skin therapies having limited applicability.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":"123-139"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139567373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and Evaluation of Tetrandrine Nanocrystals to Improve Bioavailability. 粉防己碱纳米晶的制备及评价提高生物利用度。
Current drug delivery Pub Date : 2024-12-24 DOI: 10.2174/0115672018341709241121092617
Fei Xue, Lan Yang, Shuai Ma, Jin Hua Chang, Pei Liu, Xi Gang Liu, Ru Xing Wang
{"title":"Preparation and Evaluation of Tetrandrine Nanocrystals to Improve Bioavailability.","authors":"Fei Xue, Lan Yang, Shuai Ma, Jin Hua Chang, Pei Liu, Xi Gang Liu, Ru Xing Wang","doi":"10.2174/0115672018341709241121092617","DOIUrl":"https://doi.org/10.2174/0115672018341709241121092617","url":null,"abstract":"<p><strong>Background: </strong>Tetrandrine (TET) has multiple pharmacological activities, but its water solubility is poor, which is the main reason for its low bioavailability.</p><p><strong>Objectives: </strong>The purpose of this study was to prepare TET nanocrystals (TET-NCs) using a grinding method to enhance the dissolution rate and ultimately improve the bioavailability of TET.</p><p><strong>Methods: </strong>TET-NCs were synthesized via media milling, employing Poloxam 407 (P407) as surface stabilizer and mannitol as a cryoprotectant during freeze-drying. The crystal structure, particle diameter, and zeta potential were characterized using differential scanning calorimetry (DSC), Fouriertransform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The in vitro release behavior and pharmacokinetics of TET-NCs were assessed. The cytotoxicity of TET and TET-NCS on RAW264.7 cells was determined by the CCK-8 method.</p><p><strong>Results: </strong>The particle size of TET-NCs was 360.0±7.03 nm, PDI was 0.26±0.03, and zeta potential was 6.64±0.22 mV. The cumulative dissolution within 60 minutes was 96.40±2.31%. The pharmacokinetic study showed that AUC0-72 h and Cmax of TET-NCs were significantly enhanced by 3.07 and 2.57 times, respectively, compared with TET (p<0.01). TET-NCs significantly increased the cell inhibition on RAW264.7 cells compared to the TET (P<0.01).</p><p><strong>Conclusion: </strong>The preparation of TET-NCs enhanced dissolution rate and bioavailability significantly, and it also improved the inhibition effect of RAW264.7 cells.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142901539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Naturally-Derived Targeted Nano Delivery Therapy for Burn Wound Healing with Special Emphasis on Preclinical Outcomes. 探索自然衍生的靶向纳米递送治疗烧伤创面愈合,特别强调临床前结果。
Current drug delivery Pub Date : 2024-12-03 DOI: 10.2174/0115672018343042241120072749
Abhranil Bhuyan, Piyali Dey, Himanshu Gogoi, Santa Mandal
{"title":"Exploring Naturally-Derived Targeted Nano Delivery Therapy for Burn Wound Healing with Special Emphasis on Preclinical Outcomes.","authors":"Abhranil Bhuyan, Piyali Dey, Himanshu Gogoi, Santa Mandal","doi":"10.2174/0115672018343042241120072749","DOIUrl":"https://doi.org/10.2174/0115672018343042241120072749","url":null,"abstract":"<p><p>Plant bioactive are being used since the early days of medicinal discovery for their various therapeutic activities and are safer compared to modern medicines. According to World Health Organization (WHO), approximately 180,000 deaths from burns occur every year with the majority in countries. Recent years have witnessed significant advancements in this domain, with numerous plant bioactive and their various nanoformulations demonstrating promising preclinical burn wound healing activity and identified plant-based nanotechnology of various materials through some variations of cellular mechanisms. A comprehensive search was conducted on scientific databases like PubMed, Web of Science, ScienceDirect and Google Scholar to retrieve relevant literature on burn wound, plants, nano formulations and in vivo studies from 1990 to 2024. From a total of approximately 180 studies, 40 studies were screened out following the inclusion and exclusion criteria, which reported 40 different plants and plant extracts with their various nano-formulations (NFs) that were used against burn wounds preclinically. This study provides the current scenario of naturally-derived targeted therapy, exploring the impact of natural products on various nanotechnology in burn wound healing on a preclinical model. This comprehensive review provides the application of herbal nanoformulations (HBNF) for the treatment of burn wounds. Natural products and their derivatives may include many unidentified bioactive chemicals or untested nano-formulations that might be useful in today's medical toolbox. Mostly, nano-delivery system modulates the bioactive compound's effectiveness on burn wounds and increases compatibility by suppressing inflammation. However, their exploration remains incomplete, necessitating possible pathways and mechanisms of action using clinical models.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142776195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovative Nanocomposites for Drug Delivery: A Novel Approach for Diabetic Foot Ulcer. 用于给药的创新纳米复合材料:治疗糖尿病足溃疡的新方法。
Current drug delivery Pub Date : 2024-11-07 DOI: 10.2174/0115672018322140241023054041
Rubi Parveen, Faraat Ali, Shiv Dev Singh
{"title":"Innovative Nanocomposites for Drug Delivery: A Novel Approach for Diabetic Foot Ulcer.","authors":"Rubi Parveen, Faraat Ali, Shiv Dev Singh","doi":"10.2174/0115672018322140241023054041","DOIUrl":"https://doi.org/10.2174/0115672018322140241023054041","url":null,"abstract":"<p><p>Diabetic Foot Ulcer (DFU) is a chronic wound, and a person with diabetes has an increased lifetime risk of foot ulcers (19%-34%) and high morbidity (65% recurrence in 3-5 years, 20% lifetime amputation). Recent data have shown rising amputation rates, especially in the younger and minority populations. This abstract discusses innovative approaches for addressing this issue. This highlights the use of nanotechnology-based drug nanocomposite systems for natural wound healing therapies, with a focus on nanoparticles, nano-emulsions, and nanogels. This review also emphasizes the potential of hydrogels for drug delivery, highlighting their versatility in various medical applications. Furthermore, it delves into the use of silver nanoparticles (AgNP's) for treating diabetic wounds while acknowledging the need to address potential toxicity concerns. Finally, the abstract discusses the utilization of traditional herbal medicine and the integration of modern science to advance wound care, particularly focusing on wound microbiome, immune response, and controlled herbal medicine delivery. This study also highlights clinical trials conducted on DFU. Overall, these abstracts highlight the importance of exploring diverse and innovative solutions to chronic wound management.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142607232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanostructured Lipid Carrier-based Topical Gels as Novel Drug Delivery System: A Comprehensive Overview. 基于纳米结构脂质载体的外用凝胶作为新型给药系统:全面概述。
Current drug delivery Pub Date : 2024-10-18 DOI: 10.2174/0115672018335655241015062436
Ujjwal Kumar Biswas, Shreeja Sen, Susrita Sharma, Mohana Paul, Amit Kumar Nayak, Anindya Bose
{"title":"Nanostructured Lipid Carrier-based Topical Gels as Novel Drug Delivery System: A Comprehensive Overview.","authors":"Ujjwal Kumar Biswas, Shreeja Sen, Susrita Sharma, Mohana Paul, Amit Kumar Nayak, Anindya Bose","doi":"10.2174/0115672018335655241015062436","DOIUrl":"https://doi.org/10.2174/0115672018335655241015062436","url":null,"abstract":"<p><p>Nanostructured lipid carriers (NLCs) are lipidic nanocarriers that recover the permanency and capacity of drug payloads. NLCs are well-known as second-generation lipid nanocarriers with an unstructured matrix, presenting potentially advantageous nanocarrier systems with marketable opportunities because of reproducible production methodologies and biocompatible lipidic excipients. These (NLCs) are now recognized as a very promising nanocarrier structure for the efficient delivery of drugs via different administration routes. In recent years, several NLC-based gels have been developed and evaluated for topical delivery of many drugs and other therapeutic agents. This review article presents an overview of NLC-based topical gels investigated to deliver drugs via ocular, dermal, and transdermal routes. In addition, the classification, manufacturing, characterizations, advantages, and disadvantages of NLCs are addressed in this article. We also discussed different evaluations of NLC-based topical gels.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluconazole-loaded Hyaluronic Acid-modified Transfersomal Hydrogels Containing D-panthenol for Ocular Delivery in Fungal Keratitis Management. 含 D-泛醇的氟康唑负载型透明质酸改性传导体水凝胶用于真菌性角膜炎的眼部给药治疗
Current drug delivery Pub Date : 2024-10-18 DOI: 10.2174/0115672018342369241018050810
Biswarup Das, Amit Kumar Nayak, Subrata Mallick
{"title":"Fluconazole-loaded Hyaluronic Acid-modified Transfersomal Hydrogels Containing D-panthenol for Ocular Delivery in Fungal Keratitis Management.","authors":"Biswarup Das, Amit Kumar Nayak, Subrata Mallick","doi":"10.2174/0115672018342369241018050810","DOIUrl":"https://doi.org/10.2174/0115672018342369241018050810","url":null,"abstract":"<p><strong>Background: </strong>Fungal keratitis (mycotic keratitis) is an eye infection in which the cornea is infected by fungi and such fungal keratitis management can be effectively possible by ocular administration of antifungal drugs.</p><p><strong>Objective: </strong>The main objectives of the present research were to develop and evaluate fluconazoleloaded transfersomal hydrogels for ocular delivery in the effective management of fungal keratitis.</p><p><strong>Methods: </strong>A 23 factorial design-based approach was used for statistical optimization, where (A) the ratio of lipid to edge activators, (B) the amount of hyaluronic acid (% HA), and (C) the ratio of edge activators (sodium deoxycholate to Span 80) were taken as three factors. The average vesicle diameter (Z, nm) of transfersomes was taken as a response. Further, fluconazole-loaded transfersomes (FTO) were incorporated into 1% Carbopol 940-based hydrogel (OF1) and 2% HMPC K4M-based hydrogel (OF2) containing D-panthenol (5% w/w).</p><p><strong>Results: </strong>The optimal variable setting for the optimized formulations of FTO was (A) = 9.15, (B) = 0.30%, and (C) = 3.00. FTO exhibited 66.39 nm Z, 0.247 polydispersity index, - 33.10 mV zeta potential, and 65.38 ± 1.77 % DEE, and desirable elasticity. TEM image of FTO demonstrated a unilamellar vesicular structure. The ex vivo ocular permeation of fluconazole from transfersomal hydrogels was sustained over 24 h. All the transfersomal hydrogels showed good bioadhesion and excellent antifungal activity with respect to the zone of inhibition against Candida albicans than Aspergillus fumigates, in vitro. HET-CAM study results demonstrated that both the hydrogels were nonirritant and safe for ocular. Short-term physical stability study suggested the stability of the developed formulation.</p><p><strong>Conclusion: </strong>The current research demonstrated a new way to enhance the ocular penetration of fluconazole via transfersomal hydrogel formulations for ocular delivery in the effective management of fungal keratitis.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved Therapeutic Efficacy: Liposome-Coated Mesoporous Silica Nanoparticles Delivering Thymoquinone to MCF-7 Cells. 提高疗效:向 MCF-7 细胞输送胸腺醌的脂质体包裹介孔二氧化硅纳米粒子。
Current drug delivery Pub Date : 2024-10-16 DOI: 10.2174/0115672018317245241007044455
Pooria M Arvejeh, Fatemeh A Chermahini, Amin Soltani, Zahra Lorigooini, Mahmoud Rafieian-Kopaei, Gholam Reza Mobini, Pegah Khosravian
{"title":"Improved Therapeutic Efficacy: Liposome-Coated Mesoporous Silica Nanoparticles Delivering Thymoquinone to MCF-7 Cells.","authors":"Pooria M Arvejeh, Fatemeh A Chermahini, Amin Soltani, Zahra Lorigooini, Mahmoud Rafieian-Kopaei, Gholam Reza Mobini, Pegah Khosravian","doi":"10.2174/0115672018317245241007044455","DOIUrl":"https://doi.org/10.2174/0115672018317245241007044455","url":null,"abstract":"<p><strong>Background: </strong>Breast cancer remains a significant global health challenge, with thymoquinone showing promise as a therapeutic agent, but hindered by poor solubility.</p><p><strong>Objective: </strong>This study aimed to enhance TQ delivery to MCF-7 breast cancer cells using mesitylene- mesoporous silica nanoparticles coated with liposomes, designed for controlled drug release.</p><p><strong>Methods: </strong>Nanoparticles were synthesized using the sol-gel method and coated with phosphatidylserine- cholesterol liposomes. Different nanocharacterization techniques and in vitro assays were employed to assess the drug release kinetics, cellular uptake, cytotoxicity, and apoptosis.</p><p><strong>Results: </strong>The nanoparticles exhibited favorable properties, including a large pore size of 3.6 nm, a surface area of 248.96 m2/g, and a hydrodynamic size of 171.571 ± 8.342 nm with a polydispersity index of 0.182 ± 0.017, indicating uniformity and stability. The successful lipid bilayer coating was confirmed by a zeta potential shift from +6.25 mV to -5.65 mV. The coated nanoparticles demonstrated a slow and sustained drug release profile, with cellular uptake of FITC-formulated nanoparticles being approximately 5-fold higher than free FITC (P < 0.0001). Cytotoxicity assays revealed a significant reduction in cell viability (P < 0.0001), reaching an IC50 value of 25 μM at 48 hours. Apoptosis rates were significantly higher in cells treated with the formulated TQ compared to the free drug and control at both 24 and 48 hours (P < 0.0001).</p><p><strong>Conclusion: </strong>This nanoformulation significantly enhanced TQ delivery, offering a promising strategy for targeted breast cancer therapy. Further preclinical studies are recommended to advance this approach in cancer treatment.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信