Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention最新文献

筛选
英文 中文
CLEFT: Language-Image Contrastive Learning with Efficient Large Language Model and Prompt Fine-Tuning. 基于高效大语言模型和快速微调的语言-图像对比学习。
Yuexi Du, Brian Chang, Nicha C Dvornek
{"title":"CLEFT: Language-Image Contrastive Learning with Efficient Large Language Model and Prompt Fine-Tuning.","authors":"Yuexi Du, Brian Chang, Nicha C Dvornek","doi":"10.1007/978-3-031-72390-2_44","DOIUrl":"10.1007/978-3-031-72390-2_44","url":null,"abstract":"<p><p>Recent advancements in Contrastive Language-Image Pre-training (CLIP) [21] have demonstrated notable success in self-supervised representation learning across various tasks. However, the existing CLIP-like approaches often demand extensive GPU resources and prolonged training times due to the considerable size of the model and dataset, making them poor for medical applications, in which large datasets are not always common. Meanwhile, the language model prompts are mainly manually derived from labels tied to images, potentially overlooking the richness of information within training samples. We introduce a novel language-image Contrastive Learning method with an Efficient large language model and prompt Fine-Tuning (CLEFT) that harnesses the strengths of the extensive pre-trained language and visual models. Furthermore, we present an efficient strategy for learning context-based prompts that mitigates the gap between informative clinical diagnostic data and simple class labels. Our method demonstrates state-of-the-art performance on multiple chest X-ray and mammography datasets compared with various baselines. The proposed parameter efficient framework can reduce the total trainable model size by 39% and reduce the trainable language model to only 4% compared with the current BERT encoder.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15012 ","pages":"465-475"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11709740/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142960994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TLRN: Temporal Latent Residual Networks For Large Deformation Image Registration. TLRN:用于大变形图像配准的时间隐残差网络。
Nian Wu, Jiarui Xing, Miaomiao Zhang
{"title":"TLRN: Temporal Latent Residual Networks For Large Deformation Image Registration.","authors":"Nian Wu, Jiarui Xing, Miaomiao Zhang","doi":"10.1007/978-3-031-72069-7_68","DOIUrl":"10.1007/978-3-031-72069-7_68","url":null,"abstract":"<p><p>This paper presents a novel approach, termed <i>Temporal Latent Residual Network (TLRN)</i>, to predict a sequence of deformation fields in time-series image registration. The challenge of registering time-series images often lies in the occurrence of large motions, especially when images differ significantly from a reference (e.g., the start of a cardiac cycle compared to the peak stretching phase). To achieve accurate and robust registration results, we leverage the nature of motion continuity and exploit the temporal smoothness in consecutive image frames. Our proposed TLRN highlights a temporal residual network with residual blocks carefully designed in latent deformation spaces, which are parameterized by time-sequential initial velocity fields. We treat a sequence of residual blocks over time as a dynamic training system, where each block is designed to learn the residual function between desired deformation features and current input accumulated from previous time frames. We validate the effectivenss of TLRN on both synthetic data and real-world cine cardiac magnetic resonance (CMR) image videos. Our experimental results shows that TLRN is able to achieve substantially improved registration accuracy compared to the state-of-the-art. Our code is publicly available at https://github.com/nellie689/TLRN.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15002 ","pages":"728-738"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929566/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143694983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HATs: Hierarchical Adaptive Taxonomy Segmentation for Panoramic Pathology Image Analysis. 全景病理图像分析的层次自适应分类分割。
Ruining Deng, Quan Liu, Can Cui, Tianyuan Yao, Juming Xiong, Shunxing Bao, Hao Li, Mengmeng Yin, Yu Wang, Shilin Zhao, Yucheng Tang, Haichun Yang, Yuankai Huo
{"title":"HATs: Hierarchical Adaptive Taxonomy Segmentation for Panoramic Pathology Image Analysis.","authors":"Ruining Deng, Quan Liu, Can Cui, Tianyuan Yao, Juming Xiong, Shunxing Bao, Hao Li, Mengmeng Yin, Yu Wang, Shilin Zhao, Yucheng Tang, Haichun Yang, Yuankai Huo","doi":"10.1007/978-3-031-72083-3_15","DOIUrl":"10.1007/978-3-031-72083-3_15","url":null,"abstract":"<p><p>Panoramic image segmentation in computational pathology presents a remarkable challenge due to the morphologically complex and variably scaled anatomy. For instance, the intricate organization in kidney pathology spans multiple layers, from regions like the cortex and medulla to functional units such as glomeruli, tubules, and vessels, down to various cell types. In this paper, we propose a novel Hierarchical Adaptive Taxonomy Segmentation (HATs) method, which is designed to thoroughly segment panoramic views of kidney structures by leveraging detailed anatomical insights. Our approach entails (1) the innovative HATs technique which translates spatial relationships among 15 distinct object classes into a versatile \"plug-and-play\" loss function that spans across regions, functional units, and cells, (2) the incorporation of anatomical hierarchies and scale considerations into a unified simple matrix representation for all panoramic entities, (3) the adoption of the latest AI foundation model (EfficientSAM) as a feature extraction tool to boost the model's adaptability, yet eliminating the need for manual prompt generation in conventional segment anything model (SAM). Experimental findings demonstrate that the HATs method offers an efficient and effective strategy for integrating clinical insights and imaging precedents into a unified segmentation model across more than 15 categories. The official implementation is publicly available at https://github.com/hrlblab/HATs.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15004 ","pages":"155-166"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11927787/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143694985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Attention-Enhanced Fusion of Structural and Functional MRI for Analyzing HIV-Associated Asymptomatic Neurocognitive Impairment. 结构性和功能性核磁共振成像的注意力增强融合,用于分析艾滋病毒相关的无症状神经认知障碍。
Yuqi Fang, Wei Wang, Qianqian Wang, Hong-Jun Li, Mingxia Liu
{"title":"Attention-Enhanced Fusion of Structural and Functional MRI for Analyzing HIV-Associated Asymptomatic Neurocognitive Impairment.","authors":"Yuqi Fang, Wei Wang, Qianqian Wang, Hong-Jun Li, Mingxia Liu","doi":"10.1007/978-3-031-72120-5_11","DOIUrl":"10.1007/978-3-031-72120-5_11","url":null,"abstract":"<p><p>Asymptomatic neurocognitive impairment (ANI) is a predominant form of cognitive impairment among individuals infected with human immunodeficiency virus (HIV). The current diagnostic criteria for ANI primarily rely on subjective clinical assessments, possibly leading to different interpretations among clinicians. Some recent studies leverage structural or functional MRI containing objective biomarkers for ANI analysis, offering clinicians companion diagnostic tools. However, they mainly utilize a single imaging modality, neglecting complementary information provided by structural and functional MRI. To this end, we propose an attention-enhanced structural and functional MRI fusion (ASFF) framework for HIV-associated ANI analysis. Specifically, the ASFF first extracts data-driven and human-engineered features from structural MRI, and also captures functional MRI features via a graph isomorphism network and Transformer. A <i>mutual cross-attention fusion module</i> is then designed to model the underlying relationship between structural and functional MRI. Additionally, a <i>semantic inter-modality constraint</i> is introduced to encourage consistency of multimodal features, facilitating effective feature fusion. Experimental results on 137 subjects from an HIV-associated ANI dataset with T1-weighted MRI and resting-state functional MRI show the effectiveness of our ASFF in ANI identification. Furthermore, our method can identify both modality-shared and modality-specific brain regions, which may advance our understanding of the structural and functional pathology underlying ANI.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15011 ","pages":"113-123"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512738/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142516842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physics Informed Neural Networks for Estimation of Tissue Properties from Multi-echo Configuration State MRI. 基于物理信息的神经网络在多回波构型状态MRI中估计组织特性。
Samuel I Adams-Tew, Henrik Odéen, Dennis L Parker, Cheng-Chieh Cheng, Bruno Madore, Allison Payne, Sarang Joshi
{"title":"Physics Informed Neural Networks for Estimation of Tissue Properties from Multi-echo Configuration State MRI.","authors":"Samuel I Adams-Tew, Henrik Odéen, Dennis L Parker, Cheng-Chieh Cheng, Bruno Madore, Allison Payne, Sarang Joshi","doi":"10.1007/978-3-031-72120-5_47","DOIUrl":"10.1007/978-3-031-72120-5_47","url":null,"abstract":"<p><p>This work investigates the use of configuration state imaging together with deep neural networks to develop quantitative MRI techniques for deployment in an interventional setting. A physics modeling technique for inhomogeneous fields and heterogeneous tissues is presented and used to evaluate the theoretical capability of neural networks to estimate parameter maps from configuration state signal data. All tested normalization strategies achieved similar performance in estimating <math> <msub><mrow><mi>T</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </math> and <math> <msubsup><mrow><mi>T</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mi>*</mi></mrow> </msubsup> </math> . Varying network architecture and data normalization had substantial impacts on estimated flip angle and <math> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </math> , highlighting their importance in developing neural networks to solve these inverse problems. The developed signal modeling technique provides an environment that will enable the development and evaluation of physics-informed machine learning techniques for MR parameter mapping and facilitate the development of quantitative MRI techniques to inform clinical decisions during MR-guided treatments.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15011 ","pages":"502-511"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653200/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Volume-optimal persistence homological scaffolds of hemodynamic networks covary with MEG theta-alpha aperiodic dynamics. 血流动力学网络的体积最优持续性同源支架与MEG - α非周期动力学共变。
Nghi Nguyen, Tao Hou, Enrico Amico, Jingyi Zheng, Huajun Huang, Alan D Kaplan, Giovanni Petri, Joaquín Goñi, Yize Zhao, Duy Duong-Tran, Li Shen
{"title":"Volume-optimal persistence homological scaffolds of hemodynamic networks covary with MEG theta-alpha aperiodic dynamics.","authors":"Nghi Nguyen, Tao Hou, Enrico Amico, Jingyi Zheng, Huajun Huang, Alan D Kaplan, Giovanni Petri, Joaquín Goñi, Yize Zhao, Duy Duong-Tran, Li Shen","doi":"10.1007/978-3-031-72384-1_49","DOIUrl":"10.1007/978-3-031-72384-1_49","url":null,"abstract":"<p><p>Higher-order properties of functional magnetic resonance imaging (fMRI) induced connectivity have been shown to unravel many exclusive topological and dynamical insights beyond pairwise interactions. Nonetheless, whether these fMRI-induced higher-order properties play a role in disentangling other neuroimaging modalities' insights remains largely unexplored and poorly understood. In this work, by analyzing fMRI data from the Human Connectome Project Young Adult dataset using persistent homology, we discovered that the volume-optimal persistence homological scaffolds of fMRI-based functional connectomes exhibited conservative topological reconfigurations from the resting state to attentional task-positive state. Specifically, while reflecting the extent to which each cortical region contributed to functional cycles following different cognitive demands, these reconfigurations were constrained such that the spatial distribution of cavities in the connectome is relatively conserved. Most importantly, such level of contributions covaried with powers of aperiodic activities mostly within the theta-alpha (4-12 Hz) band measured by magnetoencephalography (MEG). This comprehensive result suggests that fMRI-induced hemodynamics and MEG theta-alpha aperiodic activities are governed by the same functional constraints specific to each cortical morpho-structure. Methodologically, our work paves the way toward an innovative computing paradigm in multimodal neuroimaging topological learning. The code for our analyses is provided in https://github.com/ngcaonghi/scaffold_noise.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15003 ","pages":"519-529"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11816146/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143416610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the Quality of Brain MRI Generators. 脑磁共振成像发生器的质量评价。
Jiaqi Wu, Wei Peng, Binxu Li, Yu Zhang, Kilian M Pohl
{"title":"Evaluating the Quality of Brain MRI Generators.","authors":"Jiaqi Wu, Wei Peng, Binxu Li, Yu Zhang, Kilian M Pohl","doi":"10.1007/978-3-031-72117-5_28","DOIUrl":"10.1007/978-3-031-72117-5_28","url":null,"abstract":"<p><p>Deep learning models generating structural brain MRIs have the potential to significantly accelerate discovery of neuroscience studies. However, their use has been limited in part by the way their quality is evaluated. Most evaluations of generative models focus on metrics originally designed for natural images (such as structural similarity index and Fréchet inception distance). As we show in a comparison of 6 state-of-the-art generative models trained and tested on over 3000 MRIs, these metrics are sensitive to the experimental setup and inadequately assess how well brain MRIs capture macrostructural properties of brain regions (a.k.a., anatomical plausibility). This shortcoming of the metrics results in inconclusive findings even when qualitative differences between the outputs of models are evident. We therefore propose a framework for evaluating models generating brain MRIs, which requires uniform processing of the real MRIs, standardizing the implementation of the models, and automatically segmenting the MRIs generated by the models. The segmentations are used for quantifying the plausibility of anatomy displayed in the MRIs. To ensure meaningful quantification, it is crucial that the segmentations are highly reliable. Our framework rigorously checks this reliability, a step often overlooked by prior work. Only 3 of the 6 generative models produced MRIs, of which at least 95% had highly reliable segmentations. More importantly, the assessment of each model by our framework is in line with qualitative assessments, reinforcing the validity of our approach. The code of this framework is available via https://github.com/jiaqiw01/MRIAnatEval.git.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15010 ","pages":"297-307"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12066240/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144056478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Super-Field MRI Synthesis for Infant Brains Enhanced by Dual Channel Latent Diffusion. 双通道潜在扩散增强婴儿脑超场MRI合成。
Austin Tapp, Can Zhao, Holger R Roth, Jeffrey Tanedo, Syed Muhammad Anwar, Niall J Bourke, Joseph Hajnal, Victoria Nankabirwa, Sean Deoni, Natasha Lepore, Marius George Linguraru
{"title":"Super-Field MRI Synthesis for Infant Brains Enhanced by Dual Channel Latent Diffusion.","authors":"Austin Tapp, Can Zhao, Holger R Roth, Jeffrey Tanedo, Syed Muhammad Anwar, Niall J Bourke, Joseph Hajnal, Victoria Nankabirwa, Sean Deoni, Natasha Lepore, Marius George Linguraru","doi":"10.1007/978-3-031-72384-1_42","DOIUrl":"10.1007/978-3-031-72384-1_42","url":null,"abstract":"<p><p>In resource-limited settings, portable ultra-low-field (uLF, i.e., 0.064T) magnetic resonance imaging (MRI) systems expand accessibility of radiological scanning, particularly for low-income areas as well as underserved populations like neonates and infants. However, compared to high-field (HF, e.g., ≥ 1.5T) systems, inferior image quality in uLF scanning poses challenges for research and clinical use. To address this, we introduce Super-Field Network (SFNet), a custom swinUNETRv2 with generative adversarial network components that uses uLF MRIs to generate super-field (SF) images comparable to HF MRIs. We acquired a cohort of infant data (n=30, aged 0-2 years) with paired uLF-HF MRI data from a resource-limited setting with an underrepresented population in research. To enhance the small dataset, we present a novel use of latent diffusion to create dual-channel (uLF-HF) paired MRIs. We compare SFNet with state-of-the-art synthesis methods by HF-SF image similarity perceptual scores and by automated HF and SF segmentations of white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). The best performance was achieved by SFNet trained on the latent diffusion enhanced dataset yielding state-of-the-art results in Fréchet inception distance at 9.08 ± 1.21, perceptual similarity at 0.11 ± 0.01, and PSNR at 22.64 ± 1.31. True HF and SF segmentations had a strong overlap with Dice similarity coefficients of 0.71 ± 0.1, 0.79 ± 0.2, and 0.73 ± 0.08 for WM, GM, and CSF, respectively, in the developing infant brain with incomplete myelination, and displayed 166%, 107%, and 106% improvement over respective uLF-based segmentation metrics. SF MRI supports health equity by enhancing the clinical use of uLF imaging systems and improving the diagnostic capabilities of low-cost portable MRI systems in resource-limited settings and for underserved populations. Our code is made openly available at https://github.com/AustinTapp/SFnet.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15003 ","pages":"444-454"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12033166/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144053815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-guided Knowledge-Injected Graph Neural Network for Alzheimer's Diseases. 针对阿尔茨海默病的自导式知识注入图神经网络。
Zhepeng Wang, Runxue Bao, Yawen Wu, Guodong Liu, Lei Yang, Liang Zhan, Feng Zheng, Weiwen Jiang, Yanfu Zhang
{"title":"Self-guided Knowledge-Injected Graph Neural Network for Alzheimer's Diseases.","authors":"Zhepeng Wang, Runxue Bao, Yawen Wu, Guodong Liu, Lei Yang, Liang Zhan, Feng Zheng, Weiwen Jiang, Yanfu Zhang","doi":"10.1007/978-3-031-72069-7_36","DOIUrl":"10.1007/978-3-031-72069-7_36","url":null,"abstract":"<p><p>Graph neural networks (GNNs) are proficient machine learning models in handling irregularly structured data. Nevertheless, their generic formulation falls short when applied to the analysis of brain connectomes in Alzheimer's Disease (AD), necessitating the incorporation of domain-specific knowledge to achieve optimal model performance. The integration of AD-related expertise into GNNs presents a significant challenge. Current methodologies reliant on manual design often demand substantial expertise from external domain specialists to guide the development of novel models, thereby consuming considerable time and resources. To mitigate the need for manual curation, this paper introduces a novel self-guided knowledge-infused multimodal GNN to autonomously integrate domain knowledge into the model development process. We propose to conceptualize existing domain knowledge as natural language, and devise a specialized multimodal GNN framework tailored to leverage this uncurated knowledge to direct the learning of the GNN submodule, thereby enhancing its efficacy and improving prediction interpretability. To assess the effectiveness of our framework, we compile a comprehensive literature dataset comprising recent peer-reviewed publications on AD. By integrating this literature dataset with several real-world AD datasets, our experimental results illustrate the effectiveness of the proposed method in extracting curated knowledge and offering explanations on graphs for domain-specific applications. Furthermore, our approach successfully utilizes the extracted information to enhance the performance of the GNN.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15002 ","pages":"378-388"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488260/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Effective Connectome from Infancy to Adolescence. 从婴儿期到青春期有效连接组的发展。
Guoshi Li, Kim-Han Thung, Hoyt Taylor, Zhengwang Wu, Gang Li, Li Wang, Weili Lin, Sahar Ahmad, Pew-Thian Yap
{"title":"Development of Effective Connectome from Infancy to Adolescence.","authors":"Guoshi Li, Kim-Han Thung, Hoyt Taylor, Zhengwang Wu, Gang Li, Li Wang, Weili Lin, Sahar Ahmad, Pew-Thian Yap","doi":"10.1007/978-3-031-72384-1_13","DOIUrl":"10.1007/978-3-031-72384-1_13","url":null,"abstract":"<p><p>Delineating the normative developmental profile of functional connectome is important for both standardized assessment of individual growth and early detection of diseases. However, functional connectome has been mostly studied using functional connectivity (FC), where undirected connectivity strengths are estimated from statistical correlation of resting-state functional MRI (rs-fMRI) signals. To address this limitation, we applied regression dynamic causal modeling (rDCM) to delineate the developmental trajectories of effective connectivity (EC), the directed causal influence among neuronal populations, in whole-brain networks from infancy to adolescence (0-22 years old) based on high-quality rs-fMRI data from Baby Connectome Project (BCP) and Human Connectome Project Development (HCP-D). Analysis with linear mixed model demonstrates significant age effect on the mean nodal EC which is best fit by a \"U\" shaped quadratic curve with minimal EC at around 2 years old. Further analysis indicates that five brain regions including the left and right cuneus, left precuneus, left supramarginal gyrus and right inferior temporal gyrus have the most significant age effect on nodal EC (<i>p</i> < 0.05, FDR corrected). Moreover, the frontoparietal control (FPC) network shows the fastest increase from early childhood to adolescence followed by the visual and salience networks. Our findings suggest complex nonlinear developmental profile of EC from infancy to adolescence, which may reflect dynamic structural and functional maturation during this critical growth period.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15003 ","pages":"131-140"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758277/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143049390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信