Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention最新文献

筛选
英文 中文
Physics Informed Neural Networks for Estimation of Tissue Properties from Multi-echo Configuration State MRI. 基于物理信息的神经网络在多回波构型状态MRI中估计组织特性。
Samuel I Adams-Tew, Henrik Odéen, Dennis L Parker, Cheng-Chieh Cheng, Bruno Madore, Allison Payne, Sarang Joshi
{"title":"Physics Informed Neural Networks for Estimation of Tissue Properties from Multi-echo Configuration State MRI.","authors":"Samuel I Adams-Tew, Henrik Odéen, Dennis L Parker, Cheng-Chieh Cheng, Bruno Madore, Allison Payne, Sarang Joshi","doi":"10.1007/978-3-031-72120-5_47","DOIUrl":"10.1007/978-3-031-72120-5_47","url":null,"abstract":"<p><p>This work investigates the use of configuration state imaging together with deep neural networks to develop quantitative MRI techniques for deployment in an interventional setting. A physics modeling technique for inhomogeneous fields and heterogeneous tissues is presented and used to evaluate the theoretical capability of neural networks to estimate parameter maps from configuration state signal data. All tested normalization strategies achieved similar performance in estimating <math> <msub><mrow><mi>T</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </math> and <math> <msubsup><mrow><mi>T</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mi>*</mi></mrow> </msubsup> </math> . Varying network architecture and data normalization had substantial impacts on estimated flip angle and <math> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </math> , highlighting their importance in developing neural networks to solve these inverse problems. The developed signal modeling technique provides an environment that will enable the development and evaluation of physics-informed machine learning techniques for MR parameter mapping and facilitate the development of quantitative MRI techniques to inform clinical decisions during MR-guided treatments.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15011 ","pages":"502-511"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653200/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Volume-optimal persistence homological scaffolds of hemodynamic networks covary with MEG theta-alpha aperiodic dynamics. 血流动力学网络的体积最优持续性同源支架与MEG - α非周期动力学共变。
Nghi Nguyen, Tao Hou, Enrico Amico, Jingyi Zheng, Huajun Huang, Alan D Kaplan, Giovanni Petri, Joaquín Goñi, Yize Zhao, Duy Duong-Tran, Li Shen
{"title":"Volume-optimal persistence homological scaffolds of hemodynamic networks covary with MEG theta-alpha aperiodic dynamics.","authors":"Nghi Nguyen, Tao Hou, Enrico Amico, Jingyi Zheng, Huajun Huang, Alan D Kaplan, Giovanni Petri, Joaquín Goñi, Yize Zhao, Duy Duong-Tran, Li Shen","doi":"10.1007/978-3-031-72384-1_49","DOIUrl":"10.1007/978-3-031-72384-1_49","url":null,"abstract":"<p><p>Higher-order properties of functional magnetic resonance imaging (fMRI) induced connectivity have been shown to unravel many exclusive topological and dynamical insights beyond pairwise interactions. Nonetheless, whether these fMRI-induced higher-order properties play a role in disentangling other neuroimaging modalities' insights remains largely unexplored and poorly understood. In this work, by analyzing fMRI data from the Human Connectome Project Young Adult dataset using persistent homology, we discovered that the volume-optimal persistence homological scaffolds of fMRI-based functional connectomes exhibited conservative topological reconfigurations from the resting state to attentional task-positive state. Specifically, while reflecting the extent to which each cortical region contributed to functional cycles following different cognitive demands, these reconfigurations were constrained such that the spatial distribution of cavities in the connectome is relatively conserved. Most importantly, such level of contributions covaried with powers of aperiodic activities mostly within the theta-alpha (4-12 Hz) band measured by magnetoencephalography (MEG). This comprehensive result suggests that fMRI-induced hemodynamics and MEG theta-alpha aperiodic activities are governed by the same functional constraints specific to each cortical morpho-structure. Methodologically, our work paves the way toward an innovative computing paradigm in multimodal neuroimaging topological learning. The code for our analyses is provided in https://github.com/ngcaonghi/scaffold_noise.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15003 ","pages":"519-529"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11816146/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143416610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Super-Field MRI Synthesis for Infant Brains Enhanced by Dual Channel Latent Diffusion. 双通道潜在扩散增强婴儿脑超场MRI合成。
Austin Tapp, Can Zhao, Holger R Roth, Jeffrey Tanedo, Syed Muhammad Anwar, Niall J Bourke, Joseph Hajnal, Victoria Nankabirwa, Sean Deoni, Natasha Lepore, Marius George Linguraru
{"title":"Super-Field MRI Synthesis for Infant Brains Enhanced by Dual Channel Latent Diffusion.","authors":"Austin Tapp, Can Zhao, Holger R Roth, Jeffrey Tanedo, Syed Muhammad Anwar, Niall J Bourke, Joseph Hajnal, Victoria Nankabirwa, Sean Deoni, Natasha Lepore, Marius George Linguraru","doi":"10.1007/978-3-031-72384-1_42","DOIUrl":"https://doi.org/10.1007/978-3-031-72384-1_42","url":null,"abstract":"<p><p>In resource-limited settings, portable ultra-low-field (uLF, i.e., 0.064T) magnetic resonance imaging (MRI) systems expand accessibility of radiological scanning, particularly for low-income areas as well as underserved populations like neonates and infants. However, compared to high-field (HF, e.g., ≥ 1.5T) systems, inferior image quality in uLF scanning poses challenges for research and clinical use. To address this, we introduce Super-Field Network (SFNet), a custom swinUNETRv2 with generative adversarial network components that uses uLF MRIs to generate super-field (SF) images comparable to HF MRIs. We acquired a cohort of infant data (n=30, aged 0-2 years) with paired uLF-HF MRI data from a resource-limited setting with an underrepresented population in research. To enhance the small dataset, we present a novel use of latent diffusion to create dual-channel (uLF-HF) paired MRIs. We compare SFNet with state-of-the-art synthesis methods by HF-SF image similarity perceptual scores and by automated HF and SF segmentations of white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). The best performance was achieved by SFNet trained on the latent diffusion enhanced dataset yielding state-of-the-art results in Fréchet inception distance at 9.08 ± 1.21, perceptual similarity at 0.11 ± 0.01, and PSNR at 22.64 ± 1.31. True HF and SF segmentations had a strong overlap with Dice similarity coefficients of 0.71 ± 0.1, 0.79 ± 0.2, and 0.73 ± 0.08 for WM, GM, and CSF, respectively, in the developing infant brain with incomplete myelination, and displayed 166%, 107%, and 106% improvement over respective uLF-based segmentation metrics. SF MRI supports health equity by enhancing the clinical use of uLF imaging systems and improving the diagnostic capabilities of low-cost portable MRI systems in resource-limited settings and for underserved populations. Our code is made openly available at https://github.com/AustinTapp/SFnet.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15003 ","pages":"444-454"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12033166/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144053815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the Quality of Brain MRI Generators. 脑磁共振成像发生器的质量评价。
Jiaqi Wu, Wei Peng, Binxu Li, Yu Zhang, Kilian M Pohl
{"title":"Evaluating the Quality of Brain MRI Generators.","authors":"Jiaqi Wu, Wei Peng, Binxu Li, Yu Zhang, Kilian M Pohl","doi":"10.1007/978-3-031-72117-5_28","DOIUrl":"10.1007/978-3-031-72117-5_28","url":null,"abstract":"<p><p>Deep learning models generating structural brain MRIs have the potential to significantly accelerate discovery of neuroscience studies. However, their use has been limited in part by the way their quality is evaluated. Most evaluations of generative models focus on metrics originally designed for natural images (such as structural similarity index and Fréchet inception distance). As we show in a comparison of 6 state-of-the-art generative models trained and tested on over 3000 MRIs, these metrics are sensitive to the experimental setup and inadequately assess how well brain MRIs capture macrostructural properties of brain regions (a.k.a., anatomical plausibility). This shortcoming of the metrics results in inconclusive findings even when qualitative differences between the outputs of models are evident. We therefore propose a framework for evaluating models generating brain MRIs, which requires uniform processing of the real MRIs, standardizing the implementation of the models, and automatically segmenting the MRIs generated by the models. The segmentations are used for quantifying the plausibility of anatomy displayed in the MRIs. To ensure meaningful quantification, it is crucial that the segmentations are highly reliable. Our framework rigorously checks this reliability, a step often overlooked by prior work. Only 3 of the 6 generative models produced MRIs, of which at least 95% had highly reliable segmentations. More importantly, the assessment of each model by our framework is in line with qualitative assessments, reinforcing the validity of our approach. The code of this framework is available via https://github.com/jiaqiw01/MRIAnatEval.git.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15010 ","pages":"297-307"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12066240/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144056478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-guided Knowledge-Injected Graph Neural Network for Alzheimer's Diseases. 针对阿尔茨海默病的自导式知识注入图神经网络。
Zhepeng Wang, Runxue Bao, Yawen Wu, Guodong Liu, Lei Yang, Liang Zhan, Feng Zheng, Weiwen Jiang, Yanfu Zhang
{"title":"Self-guided Knowledge-Injected Graph Neural Network for Alzheimer's Diseases.","authors":"Zhepeng Wang, Runxue Bao, Yawen Wu, Guodong Liu, Lei Yang, Liang Zhan, Feng Zheng, Weiwen Jiang, Yanfu Zhang","doi":"10.1007/978-3-031-72069-7_36","DOIUrl":"10.1007/978-3-031-72069-7_36","url":null,"abstract":"<p><p>Graph neural networks (GNNs) are proficient machine learning models in handling irregularly structured data. Nevertheless, their generic formulation falls short when applied to the analysis of brain connectomes in Alzheimer's Disease (AD), necessitating the incorporation of domain-specific knowledge to achieve optimal model performance. The integration of AD-related expertise into GNNs presents a significant challenge. Current methodologies reliant on manual design often demand substantial expertise from external domain specialists to guide the development of novel models, thereby consuming considerable time and resources. To mitigate the need for manual curation, this paper introduces a novel self-guided knowledge-infused multimodal GNN to autonomously integrate domain knowledge into the model development process. We propose to conceptualize existing domain knowledge as natural language, and devise a specialized multimodal GNN framework tailored to leverage this uncurated knowledge to direct the learning of the GNN submodule, thereby enhancing its efficacy and improving prediction interpretability. To assess the effectiveness of our framework, we compile a comprehensive literature dataset comprising recent peer-reviewed publications on AD. By integrating this literature dataset with several real-world AD datasets, our experimental results illustrate the effectiveness of the proposed method in extracting curated knowledge and offering explanations on graphs for domain-specific applications. Furthermore, our approach successfully utilizes the extracted information to enhance the performance of the GNN.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15002 ","pages":"378-388"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488260/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Effective Connectome from Infancy to Adolescence. 从婴儿期到青春期有效连接组的发展。
Guoshi Li, Kim-Han Thung, Hoyt Taylor, Zhengwang Wu, Gang Li, Li Wang, Weili Lin, Sahar Ahmad, Pew-Thian Yap
{"title":"Development of Effective Connectome from Infancy to Adolescence.","authors":"Guoshi Li, Kim-Han Thung, Hoyt Taylor, Zhengwang Wu, Gang Li, Li Wang, Weili Lin, Sahar Ahmad, Pew-Thian Yap","doi":"10.1007/978-3-031-72384-1_13","DOIUrl":"10.1007/978-3-031-72384-1_13","url":null,"abstract":"<p><p>Delineating the normative developmental profile of functional connectome is important for both standardized assessment of individual growth and early detection of diseases. However, functional connectome has been mostly studied using functional connectivity (FC), where undirected connectivity strengths are estimated from statistical correlation of resting-state functional MRI (rs-fMRI) signals. To address this limitation, we applied regression dynamic causal modeling (rDCM) to delineate the developmental trajectories of effective connectivity (EC), the directed causal influence among neuronal populations, in whole-brain networks from infancy to adolescence (0-22 years old) based on high-quality rs-fMRI data from Baby Connectome Project (BCP) and Human Connectome Project Development (HCP-D). Analysis with linear mixed model demonstrates significant age effect on the mean nodal EC which is best fit by a \"U\" shaped quadratic curve with minimal EC at around 2 years old. Further analysis indicates that five brain regions including the left and right cuneus, left precuneus, left supramarginal gyrus and right inferior temporal gyrus have the most significant age effect on nodal EC (<i>p</i> < 0.05, FDR corrected). Moreover, the frontoparietal control (FPC) network shows the fastest increase from early childhood to adolescence followed by the visual and salience networks. Our findings suggest complex nonlinear developmental profile of EC from infancy to adolescence, which may reflect dynamic structural and functional maturation during this critical growth period.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15003 ","pages":"131-140"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758277/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143049390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rethinking Histology Slide Digitization Workflows for Low-Resource Settings. 重新思考低资源环境下的组织学切片数字化工作流程。
Talat Zehra, Joseph Marino, Wendy Wang, Grigoriy Frantsuzov, Saad Nadeem
{"title":"Rethinking Histology Slide Digitization Workflows for Low-Resource Settings.","authors":"Talat Zehra, Joseph Marino, Wendy Wang, Grigoriy Frantsuzov, Saad Nadeem","doi":"10.1007/978-3-031-72083-3_40","DOIUrl":"10.1007/978-3-031-72083-3_40","url":null,"abstract":"<p><p>Histology slide digitization is becoming essential for telepathology (remote consultation), knowledge sharing (education), and using the state-of-the-art artificial intelligence algorithms (augmented/automated end-to-end clinical workflows). However, the cumulative costs of digital multi-slide high-speed brightfield scanners, cloud/on-premises storage, and personnel (IT and technicians) make the current slide digitization workflows out-of-reach for limited-resource settings, further widening the health equity gap; even single-slide manual scanning commercial solutions are costly due to hardware requirements (high-resolution cameras, high-spec PC/workstation, and support for only high-end microscopes). In this work, we present a new cloud slide digitization workflow for creating scanner-quality whole-slide images (WSIs) from uploaded low-quality videos, acquired from cheap and inexpensive microscopes with built-in cameras. Specifically, we present a pipeline to create stitched WSIs while automatically deblurring out-of-focus regions, upsampling input 10X images to 40X resolution, and reducing brightness/contrast and light-source illumination variations. We demonstrate the WSI creation efficacy from our workflow on World Health Organization-declared neglected tropical disease, Cutaneous Leishmaniasis (prevalent only in the poorest regions of the world and only diagnosed by sub-specialist dermatopathologists, rare in poor countries), as well as other common pathologies on core biopsies of breast, liver, duodenum, stomach and lymph node. The code and pretrained models will be accessible via our GitHub (https://github.com/nadeemlab/DeepLIIF), and the cloud platform will be available at https://deepliif.org for uploading microscope videos and downloading/viewing WSIs with shareable links (no sign-in required) for telepathology and knowledge sharing.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15004 ","pages":"427-436"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786607/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143082977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation. 用常微分方程对大脑结构-效应网络进行可解释的时空嵌入
Haoteng Tang, Guodong Liu, Siyuan Dai, Kai Ye, Kun Zhao, Wenlu Wang, Carl Yang, Lifang He, Alex Leow, Paul Thompson, Heng Huang, Liang Zhan
{"title":"Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation.","authors":"Haoteng Tang, Guodong Liu, Siyuan Dai, Kai Ye, Kun Zhao, Wenlu Wang, Carl Yang, Lifang He, Alex Leow, Paul Thompson, Heng Huang, Liang Zhan","doi":"10.1007/978-3-031-72069-7_22","DOIUrl":"10.1007/978-3-031-72069-7_22","url":null,"abstract":"<p><p>The MRI-derived brain network serves as a pivotal instrument in elucidating both the structural and functional aspects of the brain, encompassing the ramifications of diseases and developmental processes. However, prevailing methodologies, often focusing on synchronous BOLD signals from functional MRI (fMRI), may not capture directional influences among brain regions and rarely tackle temporal functional dynamics. In this study, we first construct the brain-effective network via the dynamic causal model. Subsequently, we introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE). This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic inter-play between structural and effective networks via an ordinary differential equation (ODE) model, which characterizes spatial-temporal brain dynamics. Our framework is validated on several clinical phenotype prediction tasks using two independent publicly available datasets (HCP and OASIS). The experimental results clearly demonstrate the advantages of our model compared to several state-of-the-art methods.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15002 ","pages":"227-237"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513182/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142515737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hallucination Index: An Image Quality Metric for Generative Reconstruction Models. 幻觉指数:生成式重建模型的图像质量指标
Matthew Tivnan, Siyeop Yoon, Zhennong Chen, Xiang Li, Dufan Wu, Quanzheng Li
{"title":"Hallucination Index: An Image Quality Metric for Generative Reconstruction Models.","authors":"Matthew Tivnan, Siyeop Yoon, Zhennong Chen, Xiang Li, Dufan Wu, Quanzheng Li","doi":"10.1007/978-3-031-72117-5_42","DOIUrl":"10.1007/978-3-031-72117-5_42","url":null,"abstract":"<p><p>Generative image reconstruction algorithms such as measurement conditioned diffusion models are increasingly popular in the field of medical imaging. These powerful models can transform low signal-to-noise ratio (SNR) inputs into outputs with the appearance of high SNR. However, the outputs can have a new type of error called hallucinations. In medical imaging, these hallucinations may not be obvious to a Radiologist but could cause diagnostic errors. Generally, hallucination refers to error in estimation of object structure caused by a machine learning model, but there is no widely accepted method to evaluate hallucination magnitude. In this work, we propose a new image quality metric called the hallucination index. Our approach is to compute the Hellinger distance from the distribution of reconstructed images to a zero hallucination reference distribution. To evaluate our approach, we conducted a numerical experiment with electron microscopy images, simulated noisy measurements, and applied diffusion based reconstructions. We sampled the measurements and the generative reconstructions repeatedly to compute the sample mean and covariance. For the zero hallucination reference, we used the forward diffusion process applied to ground truth. Our results show that higher measurement SNR leads to lower hallucination index for the same apparent image quality. We also evaluated the impact of early stopping in the reverse diffusion process and found that more modest denoising strengths can reduce hallucination. We believe this metric could be useful for evaluation of generative image reconstructions or as a warning label to inform radiologists about the degree of hallucinations in medical images.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15010 ","pages":"449-458"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11956116/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143757111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vessel-aware aneurysm detection using multi-scale deformable 3D attention. 血管感知动脉瘤的多尺度可变形三维关注检测。
Alberto M Ceballos-Arroyo, Hieu T Nguyen, Fangrui Zhu, Shrikanth M Yadav, Jisoo Kim, Lei Qin, Geoffrey Young, Huaizu Jiang
{"title":"Vessel-aware aneurysm detection using multi-scale deformable 3D attention.","authors":"Alberto M Ceballos-Arroyo, Hieu T Nguyen, Fangrui Zhu, Shrikanth M Yadav, Jisoo Kim, Lei Qin, Geoffrey Young, Huaizu Jiang","doi":"10.1007/978-3-031-72086-4_71","DOIUrl":"https://doi.org/10.1007/978-3-031-72086-4_71","url":null,"abstract":"<p><p>Manual detection of intracranial aneurysms (IAs) in computed tomography (CT) scans is a complex, time-consuming task even for expert clinicians, and automating the process is no less challenging. Critical difficulties associated with detecting aneurysms include their small (yet varied) size compared to scans and a high potential for false positive (FP) predictions. To address these issues, we propose a 3D, multi-scale neural architecture that detects aneurysms via a deformable attention mechanism that operates on vessel distance maps derived from vessel segmentations and 3D features extracted from the layers of a convolutional network. Likewise, we reformulate aneurysm segmentation as bounding cuboid prediction using binary cross entropy and three localization losses (location, size, IoU). Given three validation sets comprised of 152/138/38 CT scans and containing 126/101/58 aneurysms, we achieved a Sensitivity of 91.3%/97.0%/74.1% @ FP rates 0.53/0.56/0.87, with Sensitivity around 80% on small aneurysms. Manual inspection of outputs by experts showed our model only tends to miss aneurysms located in unusual locations. Code and model weights are available online.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15005 ","pages":"754-765"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11986933/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144013943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信