Austin Tapp, Can Zhao, Holger R Roth, Jeffrey Tanedo, Syed Muhammad Anwar, Niall J Bourke, Joseph Hajnal, Victoria Nankabirwa, Sean Deoni, Natasha Lepore, Marius George Linguraru
{"title":"Super-Field MRI Synthesis for Infant Brains Enhanced by Dual Channel Latent Diffusion.","authors":"Austin Tapp, Can Zhao, Holger R Roth, Jeffrey Tanedo, Syed Muhammad Anwar, Niall J Bourke, Joseph Hajnal, Victoria Nankabirwa, Sean Deoni, Natasha Lepore, Marius George Linguraru","doi":"10.1007/978-3-031-72384-1_42","DOIUrl":null,"url":null,"abstract":"<p><p>In resource-limited settings, portable ultra-low-field (uLF, i.e., 0.064T) magnetic resonance imaging (MRI) systems expand accessibility of radiological scanning, particularly for low-income areas as well as underserved populations like neonates and infants. However, compared to high-field (HF, e.g., ≥ 1.5T) systems, inferior image quality in uLF scanning poses challenges for research and clinical use. To address this, we introduce Super-Field Network (SFNet), a custom swinUNETRv2 with generative adversarial network components that uses uLF MRIs to generate super-field (SF) images comparable to HF MRIs. We acquired a cohort of infant data (n=30, aged 0-2 years) with paired uLF-HF MRI data from a resource-limited setting with an underrepresented population in research. To enhance the small dataset, we present a novel use of latent diffusion to create dual-channel (uLF-HF) paired MRIs. We compare SFNet with state-of-the-art synthesis methods by HF-SF image similarity perceptual scores and by automated HF and SF segmentations of white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). The best performance was achieved by SFNet trained on the latent diffusion enhanced dataset yielding state-of-the-art results in Fréchet inception distance at 9.08 ± 1.21, perceptual similarity at 0.11 ± 0.01, and PSNR at 22.64 ± 1.31. True HF and SF segmentations had a strong overlap with Dice similarity coefficients of 0.71 ± 0.1, 0.79 ± 0.2, and 0.73 ± 0.08 for WM, GM, and CSF, respectively, in the developing infant brain with incomplete myelination, and displayed 166%, 107%, and 106% improvement over respective uLF-based segmentation metrics. SF MRI supports health equity by enhancing the clinical use of uLF imaging systems and improving the diagnostic capabilities of low-cost portable MRI systems in resource-limited settings and for underserved populations. Our code is made openly available at https://github.com/AustinTapp/SFnet.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15003 ","pages":"444-454"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12033166/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-72384-1_42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In resource-limited settings, portable ultra-low-field (uLF, i.e., 0.064T) magnetic resonance imaging (MRI) systems expand accessibility of radiological scanning, particularly for low-income areas as well as underserved populations like neonates and infants. However, compared to high-field (HF, e.g., ≥ 1.5T) systems, inferior image quality in uLF scanning poses challenges for research and clinical use. To address this, we introduce Super-Field Network (SFNet), a custom swinUNETRv2 with generative adversarial network components that uses uLF MRIs to generate super-field (SF) images comparable to HF MRIs. We acquired a cohort of infant data (n=30, aged 0-2 years) with paired uLF-HF MRI data from a resource-limited setting with an underrepresented population in research. To enhance the small dataset, we present a novel use of latent diffusion to create dual-channel (uLF-HF) paired MRIs. We compare SFNet with state-of-the-art synthesis methods by HF-SF image similarity perceptual scores and by automated HF and SF segmentations of white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). The best performance was achieved by SFNet trained on the latent diffusion enhanced dataset yielding state-of-the-art results in Fréchet inception distance at 9.08 ± 1.21, perceptual similarity at 0.11 ± 0.01, and PSNR at 22.64 ± 1.31. True HF and SF segmentations had a strong overlap with Dice similarity coefficients of 0.71 ± 0.1, 0.79 ± 0.2, and 0.73 ± 0.08 for WM, GM, and CSF, respectively, in the developing infant brain with incomplete myelination, and displayed 166%, 107%, and 106% improvement over respective uLF-based segmentation metrics. SF MRI supports health equity by enhancing the clinical use of uLF imaging systems and improving the diagnostic capabilities of low-cost portable MRI systems in resource-limited settings and for underserved populations. Our code is made openly available at https://github.com/AustinTapp/SFnet.