Evaluating the Quality of Brain MRI Generators.

Jiaqi Wu, Wei Peng, Binxu Li, Yu Zhang, Kilian M Pohl
{"title":"Evaluating the Quality of Brain MRI Generators.","authors":"Jiaqi Wu, Wei Peng, Binxu Li, Yu Zhang, Kilian M Pohl","doi":"10.1007/978-3-031-72117-5_28","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning models generating structural brain MRIs have the potential to significantly accelerate discovery of neuroscience studies. However, their use has been limited in part by the way their quality is evaluated. Most evaluations of generative models focus on metrics originally designed for natural images (such as structural similarity index and Fréchet inception distance). As we show in a comparison of 6 state-of-the-art generative models trained and tested on over 3000 MRIs, these metrics are sensitive to the experimental setup and inadequately assess how well brain MRIs capture macrostructural properties of brain regions (a.k.a., anatomical plausibility). This shortcoming of the metrics results in inconclusive findings even when qualitative differences between the outputs of models are evident. We therefore propose a framework for evaluating models generating brain MRIs, which requires uniform processing of the real MRIs, standardizing the implementation of the models, and automatically segmenting the MRIs generated by the models. The segmentations are used for quantifying the plausibility of anatomy displayed in the MRIs. To ensure meaningful quantification, it is crucial that the segmentations are highly reliable. Our framework rigorously checks this reliability, a step often overlooked by prior work. Only 3 of the 6 generative models produced MRIs, of which at least 95% had highly reliable segmentations. More importantly, the assessment of each model by our framework is in line with qualitative assessments, reinforcing the validity of our approach. The code of this framework is available via https://github.com/jiaqiw01/MRIAnatEval.git.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15010 ","pages":"297-307"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12066240/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-72117-5_28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning models generating structural brain MRIs have the potential to significantly accelerate discovery of neuroscience studies. However, their use has been limited in part by the way their quality is evaluated. Most evaluations of generative models focus on metrics originally designed for natural images (such as structural similarity index and Fréchet inception distance). As we show in a comparison of 6 state-of-the-art generative models trained and tested on over 3000 MRIs, these metrics are sensitive to the experimental setup and inadequately assess how well brain MRIs capture macrostructural properties of brain regions (a.k.a., anatomical plausibility). This shortcoming of the metrics results in inconclusive findings even when qualitative differences between the outputs of models are evident. We therefore propose a framework for evaluating models generating brain MRIs, which requires uniform processing of the real MRIs, standardizing the implementation of the models, and automatically segmenting the MRIs generated by the models. The segmentations are used for quantifying the plausibility of anatomy displayed in the MRIs. To ensure meaningful quantification, it is crucial that the segmentations are highly reliable. Our framework rigorously checks this reliability, a step often overlooked by prior work. Only 3 of the 6 generative models produced MRIs, of which at least 95% had highly reliable segmentations. More importantly, the assessment of each model by our framework is in line with qualitative assessments, reinforcing the validity of our approach. The code of this framework is available via https://github.com/jiaqiw01/MRIAnatEval.git.

脑磁共振成像发生器的质量评价。
生成大脑结构核磁共振成像的深度学习模型有可能显著加速神经科学研究的发现。然而,它们的使用在一定程度上受到其质量评估方式的限制。大多数生成模型的评估都集中在最初为自然图像设计的度量上(如结构相似指数和fr起始距离)。正如我们在6个最先进的生成模型的比较中所显示的那样,这些指标对实验设置很敏感,并且不能充分评估大脑核磁共振成像捕获大脑区域宏观结构特性(即解剖合理性)的程度。即使在模型输出之间的质量差异很明显时,度量标准的这一缺点也会导致不确定的结果。因此,我们提出了一个评估脑核磁共振成像模型的框架,该框架要求对真实核磁共振成像进行统一处理,规范模型的实现,并对模型生成的核磁共振成像进行自动分割。分割用于量化核磁共振成像显示的解剖结构的合理性。为了确保有意义的量化,至关重要的是分割是高度可靠的。我们的框架严格检查这种可靠性,这一步经常被之前的工作所忽略。6个生成模型中只有3个生成了mri,其中至少95%具有高可靠的分割。更重要的是,我们的框架对每个模型的评估与定性评估是一致的,从而加强了我们方法的有效性。该框架的代码可通过https://github.com/jiaqiw01/MRIAnatEval.git获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信