{"title":"The role of Atg5 gene in tumorigenesis under autophagy deficiency conditions.","authors":"Hsiao-Sheng Liu, Yin-Ping Wang, Pei-Wen Lin, Man-Ling Chu, Sheng-Hui Lan, Shan-Ying Wu, Ying-Ray Lee, Hong-Yi Chang","doi":"10.1002/kjm2.12853","DOIUrl":"10.1002/kjm2.12853","url":null,"abstract":"<p><p>Autophagy is a self-recycling machinery to maintain cellular homeostasis by degrading harmful materials in the cell. Autophagy-related gene 5 (Atg5) is required for autophagosome maturation. However, the role of Atg5 in tumorigenesis under autophagy deficient conditions remains unclear. This study focused on the autophagy-independent role of Atg5 and the underlying mechanism in tumorigenesis. We demonstrated that knockout of autophagy-related genes including Atg5, Atg7, Atg9, and p62 in mouse embryonic fibroblast (MEF) cells consistently decreased cell proliferation and motility, implying that autophagy is required to maintain diverse cellular functions. An Atg7 knockout MEF (Atg7<sup>-/-</sup> MEF) cell line representing deprivation of autophagy function was used to clarify the role of Atg5 transgene in tumorigenesis. We found that Atg5-overexpressed Atg7<sup>-/-</sup>MEF (clone A) showed increased cell proliferation, colony formation, and migration under autophagy deficient conditions. Accordingly, rescuing the autophagy deficiency of clone A by overexpression of Atg7 gene shifts the role of Atg5 from pro-tumor to anti-tumor status, indicating the dual role of Atg5 in tumorigenesis. Notably, the xenograft mouse model showed that clone A of Atg5-overexpressed Atg7<sup>-/-</sup> MEF cells induced temporal tumor formation, but could not prolong further tumor growth. Finally, biomechanical analysis disclosed increased Wnt5a secretion and p-JNK expression along with decreased β-catenin expression. In summary, Atg5 functions as a tumor suppressor to protect the cell under normal conditions. In contrast, Atg5 shifts to a pro-tumor status under autophagy deprivation conditions.</p>","PeriodicalId":94244,"journal":{"name":"The Kaohsiung journal of medical sciences","volume":" ","pages":"631-641"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141201358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu-Ting Tseng, Ching-Chung Tsai, Ping-Chen Chen, Bo-Yan Lin, Sodio C N Hsu, Shu-Ping Huang, Bin Huang
{"title":"Mechanical shear flow regulates the malignancy of colorectal cancer cells.","authors":"Yu-Ting Tseng, Ching-Chung Tsai, Ping-Chen Chen, Bo-Yan Lin, Sodio C N Hsu, Shu-Ping Huang, Bin Huang","doi":"10.1002/kjm2.12844","DOIUrl":"10.1002/kjm2.12844","url":null,"abstract":"<p><p>Colorectal cancer (CRC) is notable for its high mortality and high metastatic characteristics. The shear force generated by bloodstream provides mechanical signals regulating multiple responses of cells, including metastatic cancer cells, dispersing in blood vessels. We, therefore, studied the effect of shear flow on circulating CRC cells in the present study. The CRC cell line SW620 was subjected to shear flow of 12.5 dynes/cm<sup>2</sup> for 1 and 2 h separately. Resulting elevated caspase-9 and -3 indicated that shear flow initiated the apoptosis of SW620. Enlarged cell size associated with a higher level of cyclin D1 was coincident with the flow cytometric results indicating that the cell cycle was arrested at the G<sub>1</sub> phase. An elevated phosphor-eNOS<sup>S1177</sup> increased the production of nitric oxide and led to reactive oxygen species-mediated oxidative stress. Shear flow also regulated epithelial-mesenchymal transition (EMT) by increasing E-cadherin and ZO-1 while decreasing Snail and Twist1. The migration and invasion of sheared SW620 were also substantially decreased. Further investigations showed that mitochondrial membrane potential was significantly decreased, whereas mitochondrial mass and ATP production were not changed. In addition to the shear flow of 12.5 dynes/cm<sup>2</sup>, the expressions of EMT were compared at lower (6.25 dynes/cm<sup>2</sup>) and at higher (25 dynes/cm<sup>2</sup>) shear flow. The results showed that lower shear flow increased mesenchymal characteristics and higher shear flow increased epithelial characteristics. Shear flow reduces the malignancy of CRC in their metastatic dispersal that opens up new ways to improve cancer therapies by applying a mechanical shear flow device.</p>","PeriodicalId":94244,"journal":{"name":"The Kaohsiung journal of medical sciences","volume":" ","pages":"650-659"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Immunoglobulin A vasculitis: The clinical features and pathophysiology.","authors":"Ya-Chiao Hu, Yao-Hsu Yang, Bor-Luen Chiang","doi":"10.1002/kjm2.12852","DOIUrl":"10.1002/kjm2.12852","url":null,"abstract":"<p><p>Palpable purpura, gastrointestinal symptoms, joint involvement, and renal disease characterize immunoglobulin A vasculitis (IgAV). Renal involvement ranging from mild proteinuria to severe nephritic or nephrotic syndrome highlights the importance of monitoring kidney function in patients with IgAV. Recognizing these key features is crucial for early diagnosis and appropriate management to prevent long-term complications related to kidney disease. However, the pathogenesis of IgAV remains unclear. Disease mechanisms involve various factors, including the interplay of aberrantly glycosylated IgA, anti-endothelial cell antibodies, and neutrophils following infection triggers, which are the main pathogenic mechanisms of IgAV. Insights from cases of IgAV related to Coronavirus disease 2019 have offered additional understanding of the connection between infection and IgAV pathogenesis. This review provides a valuable resource for healthcare professionals and rheumatology researchers seeking a better understanding of the clinical features and pathophysiology of IgAV.</p>","PeriodicalId":94244,"journal":{"name":"The Kaohsiung journal of medical sciences","volume":" ","pages":"612-620"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141201357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Revealing potential Rab proteins participate in regulation of secretory autophagy machinery.","authors":"Pei-Wen Lin, Man-Ling Chu, Yu-Wen Liu, Yu-Cing Chen, Yao-Hsiang Shih, Sheng-Hui Lan, Shang-Ying Wu, I-Ying Kuo, Hong-Yi Chang, Hsiao-Sheng Liu, Ying-Ray Lee","doi":"10.1002/kjm2.12848","DOIUrl":"10.1002/kjm2.12848","url":null,"abstract":"<p><p>Autophagy can be classified as degradative and secretory based on distinct functions. The small GTPase proteins Rab8a and Rab37 are responsible for secretory autophagy-mediated exocytosis of IL-1β, insulin, and TIMP1 (tissue inhibitor of 54 metalloproteinase 1). Other Rab family members participating in secretory autophagy are poorly understood. Herein, we identified 26 overlapped Rab proteins in purified autophagosomes of mouse pancreatic β-cell \"Min-6\" and human lung cancer cell \"CL1-5-Q89L\" with high secretory autophagy tendency by LC-MS/MS proteomics analysis. Six Rab proteins (Rab8a, Rab11b, Rab27a, Rab35, Rab37, and Rab7a) were detected in autophagosomes of four cell lines, associating them with autophagy-related vesicle trafficking. We used CL1-5-Q89L cell line model to evaluate the levels of Rab proteins colocalization with autophagy LC3 proteins and presence in purified autophagosomes. We found five Rab proteins (Rab8a, Rab11b, Rab27a, Rab35, and Rab37) are highly expressed in the autophagosome compared to the normal control by immunoblotting under active secretion conditions. However, only Rab8a, Rab35, and Rab37 showing high colocalization with LC3 protein by cofocal microscopy. Despite the discrepancy between the image and immunoblotting analysis, our data sustains the speculation that Rab8a, Rab11b, Rab27a, Rab35, and Rab37 are possibly associated with the secretory autophagy machinery. In contrast, Rab7a shows low colocalization with LC3 puncta and low level in the autophagosome, suggesting it regulates different vesicle trafficking machineries. Our findings open a new direction toward exploring the role of Rab proteins in secretory autophagy-related cargo exocytosis and identifying the cargoes and effectors regulated by specific Rab proteins.</p>","PeriodicalId":94244,"journal":{"name":"The Kaohsiung journal of medical sciences","volume":" ","pages":"642-649"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141158732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li‐Juan Yang, Shu‐Xiang Sui, Qing‐Hua Zheng, Min Wang
{"title":"circUQCRC2 promotes asthma progression in children by activating the VEGFA/NF‐κB pathway by targeting miR‐381‐3p","authors":"Li‐Juan Yang, Shu‐Xiang Sui, Qing‐Hua Zheng, Min Wang","doi":"10.1002/kjm2.12868","DOIUrl":"https://doi.org/10.1002/kjm2.12868","url":null,"abstract":"This study targeted to explore circUQCRC2's role and mechanism in childhood asthma. A mouse model of ovalbumin‐induced asthma was established to evaluate the effects of circUQCRC2 on childhood asthma in terms of oxidative stress, inflammation, and collagen deposition. The effects of circUQCRC2 on platelet‐derived growth factor‐BB (PDGF‐BB)‐induced smooth muscle cells (SMCs) were evaluated, the downstream mRNA of miRNA and its associated pathways were predicted and validated, and their effects on asthmatic mice were evaluated. circUQCRC2 levels were upregulated in bronchoalveolar lavage fluid of asthmatic mice and PDGF‐BB‐treated SMCs. Depleting circUQCRC2 alleviated tissue damage in asthmatic mice, improved inflammatory levels and oxidative stress in asthmatic mice and PDGF‐BB‐treated SMC, inhibited malignant proliferation and migration of SMCs, and improved airway remodeling. Mechanistically, circUQCRC2 regulated VEGFA expression through miR‐381‐3p and activated the NF‐κB cascade. circUQCRC2 knockdown inactivated the NF‐κB cascade by modulating the miR‐381‐3p/VEGFA axis. Promoting circUQCRC2 stimulates asthma development by activating the miR‐381‐3p/VEGFA/NF‐κB cascade. Therefore, knocking down circUQCRC2 or overexpressing miR‐381‐3p offers a new approach to treating childhood asthma.","PeriodicalId":94244,"journal":{"name":"The Kaohsiung journal of medical sciences","volume":"57 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A comparative analysis of surgically excised hereditary and sporadic pheochromocytomas: Insights from a single-center experience.","authors":"Narin Nasiroglu Imga, Muzaffer Serdar Deniz, Belma Ozlem Tural Balsak, Yilmaz Aslan, Altug Tuncel, Dilek Berker","doi":"10.1002/kjm2.12836","DOIUrl":"10.1002/kjm2.12836","url":null,"abstract":"<p><p>Pheochromocytoma is a tumor that usually originating from adrenal medullary chromaffin cells and producing one or more catecholamines, can manifest as hereditary or sporadic. While the majority pheochromocytomas are sporadic, hereditary forms are often associated with genetic syndromes such as von Hippel-Lindau, multiple endocrine neoplasia type 2, and neurofibromatosis type 1. This study aims to analyze data from our series of surgically excited pheochromocytoma patients and compare the characteristics between hereditary and sporadic cases. We retrospectively evaluated 33 diagnosed pheochromocytoma patients, documenting clinical features, surgical complications, and tumor characteristics in both hereditary and sporadic cases. Among the patients, 21% (7 individuals) had hereditary pheochromocytoma, while 79% (26 individuals) had sporadic cases. During diagnosis, hereditary pheochromocytoma patients exhibited a significantly lower mean age compared to the sporadic group (26.4 ± 9.9 years vs. 50.4 ± 14.0 years; p < 0.001). The maximum tumor size was also lower in hereditary cases compared to sporadic cases (p = 0.004). Adrenal tumor localization analysis showed that 63.6% were right-sided, 24.2% were left-sided, and 12.1% were bilateral. Laboratory analysis revealed significantly higher urinary norepinephrine levels in hereditary pheochromocytoma patients (p = 0.021). Our findings suggest that hereditary pheochromocytoma cases are characterized by a younger age at diagnosis, smaller tumor size, and a higher prevalence of multiple bilateral adrenal adenomas. We recommend genetic testing for all pheochromocytoma patients, particularly those with early-onset disease and bilateral adrenal tumors.</p>","PeriodicalId":94244,"journal":{"name":"The Kaohsiung journal of medical sciences","volume":" ","pages":"583-588"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140924240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Factors related to parenting difficulties and depression in the COVID-19 pandemic.","authors":"Ching-Shu Tsai, Ray C Hsiao, Cheng-Fang Yen","doi":"10.1002/kjm2.12820","DOIUrl":"10.1002/kjm2.12820","url":null,"abstract":"","PeriodicalId":94244,"journal":{"name":"The Kaohsiung journal of medical sciences","volume":" ","pages":"599-600"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140159841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Immunomodulatory effects of extracellular vesicles from mesenchymal stromal cells: Implication for therapeutic approach in autoimmune diseases.","authors":"Hsiu-Jung Liao, Ping-Ning Hsu","doi":"10.1002/kjm2.12841","DOIUrl":"10.1002/kjm2.12841","url":null,"abstract":"<p><p>Autoimmune disease is characterized by the proliferation of harmful immune cells, inducing tissue inflammation and ultimately causing organ damage. Current treatments often lack specificity, necessitating high doses, prolonged usage, and high recurrence rates. Therefore, the identification of innovative and safe therapeutic strategies is urgently required. Recent preclinical studies and clinical trials on inflammatory and autoimmune diseases have evidenced the immunosuppressive properties of mesenchymal stromal cells (MSCs). Studies have demonstrated that extracellular vesicles (EV) derived from MSCs can mitigate abnormal autoinflammation while maintaining safety within the diseased microenvironment. This study conducted a systematic review to elucidate the crucial role of MSC-EVs in alleviating autoimmune diseases, particularly focusing on their impact on the underlying mechanisms of autoimmune conditions such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and inflammatory bowel disease (IBD). By specifically examining the regulatory functions of microRNAs (miRNAs) derived from MSC-EVs, the comprehensive study aimed to enhance the understanding related to disease mechanisms and identify potential diagnostic markers and therapeutic targets for these diseases.</p>","PeriodicalId":94244,"journal":{"name":"The Kaohsiung journal of medical sciences","volume":" ","pages":"520-529"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140873894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu-Ting Tseng, Ching-Chung Tsai, Ping-Chen Chen, Bo-Yan Lin, S. C. Hsu, Shu-Ping Huang, Bin Huang
{"title":"Mechanical shear flow regulates the malignancy of colorectal cancer cells.","authors":"Yu-Ting Tseng, Ching-Chung Tsai, Ping-Chen Chen, Bo-Yan Lin, S. C. Hsu, Shu-Ping Huang, Bin Huang","doi":"10.1002/kjm2.12844","DOIUrl":"https://doi.org/10.1002/kjm2.12844","url":null,"abstract":"Colorectal cancer (CRC) is notable for its high mortality and high metastatic characteristics. The shear force generated by bloodstream provides mechanical signals regulating multiple responses of cells, including metastatic cancer cells, dispersing in blood vessels. We, therefore, studied the effect of shear flow on circulating CRC cells in the present study. The CRC cell line SW620 was subjected to shear flow of 12.5 dynes/cm2 for 1 and 2 h separately. Resulting elevated caspase-9 and -3 indicated that shear flow initiated the apoptosis of SW620. Enlarged cell size associated with a higher level of cyclin D1 was coincident with the flow cytometric results indicating that the cell cycle was arrested at the G1 phase. An elevated phosphor-eNOSS1177 increased the production of nitric oxide and led to reactive oxygen species-mediated oxidative stress. Shear flow also regulated epithelial-mesenchymal transition (EMT) by increasing E-cadherin and ZO-1 while decreasing Snail and Twist1. The migration and invasion of sheared SW620 were also substantially decreased. Further investigations showed that mitochondrial membrane potential was significantly decreased, whereas mitochondrial mass and ATP production were not changed. In addition to the shear flow of 12.5 dynes/cm2, the expressions of EMT were compared at lower (6.25 dynes/cm2) and at higher (25 dynes/cm2) shear flow. The results showed that lower shear flow increased mesenchymal characteristics and higher shear flow increased epithelial characteristics. Shear flow reduces the malignancy of CRC in their metastatic dispersal that opens up new ways to improve cancer therapies by applying a mechanical shear flow device.","PeriodicalId":94244,"journal":{"name":"The Kaohsiung journal of medical sciences","volume":"52 18","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140965573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"METTL3 aggravates cell damage induced by Streptococcus pneumoniae via the NEAT1/CTCF/MUC19 axis.","authors":"Dong-Bo Ma, Hui Zhang, Xi-Ling Wang, Qiu-Ge Wu","doi":"10.1002/kjm2.12843","DOIUrl":"https://doi.org/10.1002/kjm2.12843","url":null,"abstract":"Disruption of the alveolar barrier can trigger acute lung injury. This study elucidated the association of methyltransferase-like 3 (METTL3) with Streptococcus pneumoniae (SP)-induced apoptosis and inflammatory injury of alveolar epithelial cells (AECs). AECs were cultured and then infected with SP. Furthermore, the expression of METTL3, interleukin (IL)-10, IL-6, tumor necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1), long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1), mucin 19 (MUC19), N6-methyladenosine (m6A), and NEAT1 after m6A modification were detected by qRT-PCR, Western blot, and enzyme-linked immunosorbent, m6A quantification, and methylated RNA immunoprecipitation-qPCR analyses, respectively. Moreover, the subcellular localization of NEAT1 was analyzed by nuclear/cytosol fractionation assay, and the binding between NEAT1 and CCCTC-binding factor (CTCF) was also analyzed. The results of this investigation revealed that SP-induced apoptosis and inflammatory injury in AECs and upregulated METTL3 expression. In addition, the downregulation of METTL3 alleviated apoptosis and inflammatory injury in AECs. METTL3-mediated m6A modification increased NEAT1 and promoted its binding with CTCF to facilitate MUC19 transcription. NEAT1 or MUC19 overexpression disrupted their protective role of silencing METTL3 in AECs, thereby increasing apoptosis and inflammatory injury. In conclusion, this is the first study to suggest that METTL3 aggravates SP-induced cell damage via the NEAT1/CTCF/MUC19 axis.","PeriodicalId":94244,"journal":{"name":"The Kaohsiung journal of medical sciences","volume":"25 15","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140968578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}