Zhaozhou Zhang, Liqing Du, Qiuchen Ji, Hao Liu, Zhenxing Ren, Guang Ji, Zhao-Xiang Bian, Ling Zhao
{"title":"The Landscape of Gut Microbiota and Its Metabolites: A Key to Understanding the Pathophysiology of Pattern in Chinese Medicine.","authors":"Zhaozhou Zhang, Liqing Du, Qiuchen Ji, Hao Liu, Zhenxing Ren, Guang Ji, Zhao-Xiang Bian, Ling Zhao","doi":"10.1142/S0192415X24500046","DOIUrl":"10.1142/S0192415X24500046","url":null,"abstract":"<p><p>Liver Stagnation and Spleen Deficiency (LSSD) is a Chinese Medicine (CM) pattern commonly observed in gastrointestinal (GI) diseases, yet its biological nature remains unknown. This limits the global use of CM medications for treating GI diseases. Recent studies emphasize the role of gut microbiota and their metabolites in the pathogenesis and treatment of LSSD-associated GI diseases. There is increasing evidence supporting that an altered gut microbiome in LSSD patients or animals contributes to GI and extra-intestinal symptoms and affects the effectiveness of CM therapies. The gut microbiota is considered to be an essential component of the biological basis of LSSD. This study aims to provide an overview of existing research findings and gaps for the pathophysiological study of LSSD from the gut microbiota perspective in order to understand the relationship between the CM pattern and disease progression and to optimize CM-based diagnosis, prevention, and therapy.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":" ","pages":"89-122"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139731258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wencong Tian, Ping Zhang, Lei Yang, Peng Song, Jia Zhao, Hongzhi Wang, Yongjie Zhao, Lei Cao
{"title":"Astragaloside IV Alleviates Doxorubicin-Induced Cardiotoxicity by Inhibiting Cardiomyocyte Pyroptosis through the SIRT1/NLRP3 Pathway.","authors":"Wencong Tian, Ping Zhang, Lei Yang, Peng Song, Jia Zhao, Hongzhi Wang, Yongjie Zhao, Lei Cao","doi":"10.1142/S0192415X24500198","DOIUrl":"10.1142/S0192415X24500198","url":null,"abstract":"<p><p>Doxorubicin (DOX) is a powerful anthracycline antineoplastic drug used to treat a wide spectrum of tumors. However, its clinical application is limited due to cardiotoxic side effects. Astragaloside IV (AS IV), one of the major compounds present in aqueous extracts of <i>Astragalus membranaceus</i>, possesses potent cardiovascular protective properties, but the underlying molecular mechanisms are unclear. Thus, the aim of this study was to investigate the effect of AS IV on DOX-induced cardiotoxicity (DIC). Our findings revealed that DOX induced pyroptosis through the caspase-1/gasdermin D (GSDMD) and caspase-3/gasdermin E (GSDME) pathways. AS IV treatment significantly improved the cardiac function and alleviated myocardial injury in DOX-exposed mice by regulating intestinal flora and inhibiting pyroptosis; markedly suppressed the levels of cleaved caspase-1, N-GSDMD, cleaved caspase-3, and N-GSDME; and reversed DOX-induced downregulation of silent information regulator 1 (SIRT1) and activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome in mice. The SIRT1 inhibitor EX527 significantly blocked the protective effects of AS IV. Collectively, our results suggest that AS IV protects against DIC by inhibiting pyroptosis through the SIRT1/NLRP3 pathway.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":" ","pages":"453-469"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140137630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multidirectional Intervention of Chinese Herbal Medicine in the Prevention and Treatment of Atherosclerosis: From Endothelial Protection to Immunomodulation.","authors":"Jia-Ni Li, Meng-Yu Wang, Yu-Rong Tan, Li-Li Wang","doi":"10.1142/S0192415X24500381","DOIUrl":"10.1142/S0192415X24500381","url":null,"abstract":"<p><p>Atherosclerosis is a significant risk factor for developing cardiovascular disease and a leading cause of death worldwide. The occurrence of atherosclerosis is closely related to factors such as endothelial injury, lipid deposition, immunity, and inflammation. Conventional statins, currently used in atherosclerosis treatment, have numerous adverse side effects that limit their clinical utility, prompting the urgent need to identify safer and more effective therapeutic alternatives. Growing evidence indicates the significant potential of Chinese herbs in atherosclerosis treatment. Herbal monomer components, such as natural flavonoid compounds extracted from herbs like <i>Coptis chinensis</i> and <i>Panax notoginseng</i>, have been utilized for their lipid-lowering and inflammation-inhibiting effects in atherosclerosis treatment. These herbs can be used as single components in treating diseases and with other Chinese medicines to form herbal combinations. This approach targets the disease mechanism in multiple ways, enhancing the therapeutic effects. Thus, this review examines the roles of Chinese herbal medicine monomers and Chinese herbal compounds in inhibiting atherosclerosis, including regulating lipids, improving endothelial function, reducing oxidative stress, regulating inflammation and the immune response, and apoptosis. By highlighting these roles, our study offers new perspectives on atherosclerosis treatment with Chinese herbs and is anticipated to contribute to advancements in related research fields.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":" ","pages":"925-947"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141156034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Anti-Inflammatory Effects of Lupeol as a Candidate for New Drug Development.","authors":"Yun Jin Park, Dong Ho Park, Jong-Sup Bae","doi":"10.1142/S0192415X2450068X","DOIUrl":"10.1142/S0192415X2450068X","url":null,"abstract":"<p><p>This study explores the anti-inflammatory properties of lupeol, a notable phytosterol found in various medicinal plants, highlighting its potential as a candidate for new drug development. We examined the effects of lupeol on heme oxygenase (HO)-1, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-stimulated human umbilical vein endothelial cells (HUVECs), as well as its impact on inflammatory markers in the lung tissues of LPS-challenged mice. Lupeol treatment enhanced HO-1 production, inhibited nuclear factor (NF)-κB activity, and reduced levels of COX-2/prostaglandin E2 (PGE2) and iNOS/nitric oxide (NO). In addition, lupeol decreased the phosphorylation of signal transducer and activator of transcription 1 (STAT-1) and promoted the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), enhancing its binding to the anti-oxidant response element (ARE) and subsequently reducing interleukin (IL)-1β expression. <i>In vivo</i>, lupeol significantly lowered iNOS expression and tumor necrosis factor (TNF)-α levels in bronchoalveolar lavage fluid from LPS-treated mice. These findings suggest that lupeol exerts its anti-inflammatory effects by modulating key signaling pathways, positioning it as a promising candidate for the development of novel therapeutics targeting pathological inflammation.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":" ","pages":"1759-1771"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142335542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research Progress of Chinese Medicine in the Regulation of Liver Fibrosis-Related Signaling Pathways.","authors":"Shihao Zheng, Chengyuan Xue, Size Li, Wenying Qi, Xiaobin Zao, Xiaoke Li, Wei Wang, Qiyao Liu, Xu Cao, Peng Zhang, Yongan Ye","doi":"10.1142/S0192415X24500666","DOIUrl":"10.1142/S0192415X24500666","url":null,"abstract":"<p><p>Liver fibrosis is a common complication of chronic liver disease, significantly affecting patients' quality of life and potentially leading to cirrhosis and hepatocellular carcinoma. Despite advancements in modern medicine, the treatment of liver fibrosis remains limited and challenging. Thus, identifying new therapeutic strategies is of great clinical importance. Signaling pathways related to liver fibrosis play a crucial regulatory role in immune response and inflammation. Aberrant activation of specific pathways, such as the NF-κB signaling pathway, results in the overexpression of genes associated with liver inflammation and fibrosis, thereby promoting the progression of liver fibrosis. Chinese medicine offers unique potential advantages as a therapeutic approach. Recent studies have increasingly demonstrated that certain Chinese medicines can effectively treat liver fibrosis by regulating relevant signaling pathways. The active ingredients in these medicines can inhibit hepatic inflammatory responses and fibrotic processes by interfering with these pathways, thus reducing the severity of liver fibrosis. This paper aims to investigate the mechanisms of Chinese medicine in treating liver fibrosis and its modulation of related signaling pathways. Additionally, it discusses the prospects of the clinical application of these treatments and provides valuable references for further research and clinical practice.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":" ","pages":"1693-1728"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142335549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rui Ding, Sai-Yi Zhong, Li-Yan Deng, Lian-Xiang Luo
{"title":"Fucoxanthin Prevents Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting Ferroptosis via Nrf2/STAT3 and Glutathione Pathways.","authors":"Rui Ding, Sai-Yi Zhong, Li-Yan Deng, Lian-Xiang Luo","doi":"10.1142/S0192415X24500691","DOIUrl":"10.1142/S0192415X24500691","url":null,"abstract":"<p><p>Fucoxanthin, sourced from marine brown algae, diatoms, and microalgae, is known to possess strong anti-inflammatory activity. To explore its intrinsic mechanism, we investigated its effects on acute lung injury (ALI) with an experiment using lipopolysaccharide (LPS)-induced RAW264.7 inflammatory cells and an ALI animal model. Fucoxanthin was observed to suppress the inflammatory response <i>in vitro</i> by reducing the levels of inflammatory markers such as PTGS2, iNOS, and TNF-α. Network pharmacology analysis revealed that fucoxanthin could potentially inhibit ferroptosis through 10 targets, including PTGS2. This was further confirmed by the dose-dependent increase in lipid peroxidation and Fe[Formula: see text] levels caused by fucoxanthin, as well as the regulation of ferroptosis-associated proteins ACSL4, SLC7A11, GPX4, and FTH1. Furthermore, fucoxanthin was found to significantly reduce the inflammatory response and ferroptosis in a mouse model of LPS-induced ALI. Further research revealed that fucoxanthin could raise the levels of [Formula: see text]-Glu-Cys and carbamyl glycine, which are intermediate metabolites of glutathione synthesis, in RAW264.7 cells. This implies that fucoxanthin can inhibit ferroptosis by regulating the [Formula: see text]-glutamyl cycle. Our research demonstrated that fucoxanthin is capable of activating phosphorylated STAT3 and raising the expression of Nrf2 and HO-1, implying that fucoxanthin may be able to prevent LPS-induced ferroptosis in ALI through the Nrf2/STAT3 pathway.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":" ","pages":"1773-1794"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Targeting Autophagy with Geniposide Ameliorates Atherosclerosis in [Formula: see text] Mice.","authors":"Xiaodan Yang, Jiaxi Shi, Weifeng He, Junlong Li, Rui Li, Jianbin Pi, Yuan Luo, Mingyang Gu, Xiaolong Wang, Wei Wu, Lijin Qing","doi":"10.1142/S0192415X24500940","DOIUrl":"10.1142/S0192415X24500940","url":null,"abstract":"<p><p>Atherosclerosis (AS) is a major cause of mortality worldwide. Geniposide (GP) has lipolytic and anti-inflammatory effects and is widely administered for the treatment of cardiovascular disease. There is considerable evidence for the importance of autophagy in the cardiovascular system, and GP can promote autophagy and improve AS. However, the underlying mechanism is still unclear; network pharmacology and molecular docking suggest that GP may play anti-atherosclerotic roles by regulating the PI3K/Akt/mTOR pathway, which is a typical autophagy signal transduction approach. We further hypothesized that GP ameliorates AS by regulating autophagy through the PI3K/Akt/mTOR pathway. Oil Red O, Sirius Red, and Masson's trichrome staining revealed that GP can inhibit atherosclerotic lipid accumulation and stabilize plaques. Macrophages absorb lipids, form foam cells, and destabilize plaques. Immunohistochemical staining revealed that GP reduces the expression of F4/80, a major macrophage marker. We used western blotting (WB) and immunofluorescence (IF) to measure the protein levels of PI3K/Akt/mTOR, sequestosome-1, Beclin1, and long-chain base 3 (LC3). The experimental results revealed that GP can increase the expression of LC3, increase the expression of Beclin1, and decrease P62. Additionally, it inhibits the phosphorylation of PI3K/Akt/mTOR. In conclusion, GP can effectively treat AS by enhancing autophagy through the PI3K/Akt/mTOR pathway.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":" ","pages":"2469-2490"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142848772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Trends and Characteristics of the Whole-Grain Diet.","authors":"Qingyan Pei, Chuan Chen, Hao Bai, Yirong Xi, Leilei Zhang, Haiming Li, Houfu Liu, Yibin Hao","doi":"10.1142/S0192415X24500769","DOIUrl":"10.1142/S0192415X24500769","url":null,"abstract":"<p><p>Whole-grain foods are good choices for a nutritious diet and play an important role in lowering the risk of chronic diseases. China is a large cereal-consuming country that is experiencing rapid economic growth and an increased burden of noncommunicable diseases. Studies have shown that insufficient intake of whole grains has increased the burden on public health to some extent. Therefore, we aimed to analyze the characteristics and trends of whole-grain consumption in China to contribute to the development of a healthy Chinese population. We searched for important policies, standards, and dietary recommendations related to whole grains through the official websites of the China State Council and its affiliated ministries. Official and public databases, such as the National Bureau of Statistics and the China Health and Nutrition Survey (CHNS), were utilized to obtain data on whole grains and different foods. This approach was employed to gain insight into changes in whole-grain intake levels and dietary structure. Since 2010, the development of whole grains in China has received significant attention. Supportive policies have been continuously introduced on both the supply and demand sides. Numerous whole-grain standards have been developed, and terms and definitions related to whole grains have been preliminarily defined. The consumption of whole grains has fluctuated among Chinese residents since 2000, with a downward trend from 2000 to 2009, followed by an upward trend from 2009 to 2018. However, despite this increasing trend, the whole-grain intake of 80% of the adult residents was still lower than the minimum recommended dietary intake (50[Formula: see text]g/day). Furthermore, the dietary structure of Chinese residents has undergone a significant transformation, characterized by high consumption of high-fat foods, excessive consumption of meat, low intake of dietary fiber, and insufficient consumption of whole grains. These findings highlight the need for further monitoring of whole-grain intake in China. In addition, a sound whole-grain standardization system should be established, and the availability and consumer awareness of whole grains should be improved, with the goal of increasing the intake of whole grains.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":" ","pages":"1969-1987"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142735484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fengge Yang, Wei Gao, Junting Wang, Xue Li, Honglin Li
{"title":"Progress of Chinese Medicine in Regulating Microglial Polarization against Alzheimer's Disease.","authors":"Fengge Yang, Wei Gao, Junting Wang, Xue Li, Honglin Li","doi":"10.1142/S0192415X24500873","DOIUrl":"10.1142/S0192415X24500873","url":null,"abstract":"<p><p>Alzheimer's disease (AD), the predominant form of dementia, is a neurodegenerative disorder of the central nervous system (CNS) characterized by a subtle onset and a spectrum of cognitive and functional declines. The clinical manifestation of AD encompasses memory deficits, cognitive deterioration, and behavioral disturbances, culminating in a severe impairment of daily living skills. Despite its high prevalence, accounting for 60-70% of all dementia cases, there remains an absence of curative therapeutics. Microglia (MG), the resident immune cells of the CNS, exhibit a bifurcated role in AD pathogenesis. Functioning in a neuroprotective capacity, MGs express scavenger receptors, facilitating the clearance of [Formula: see text]-amyloid protein (A[Formula: see text]) and cellular debris. Conversely, aberrant activation of MGs can lead to the secretion of pro-inflammatory cytokines, thereby propagating neuroinflammatory responses that are detrimental to neuronal integrity. The dynamics of MG activation and the ensuing neuroinflammation are pivotal in the evolution of AD. Chinese medicine (CM), a treasure trove of traditional Chinese cultural practices, has demonstrated significant potential in the therapeutic management of AD. Over the past triennium, CM has garnered considerable research attention for its multifaceted approaches to AD, including the regulation of MG polarization. This review synthesizes current knowledge on the origins, polarization dynamics, and mechanistic interplay of MG with AD pathology. It further explores the nexus between MG polarization and cardinal pathological hallmarks of AD, such as A[Formula: see text] plaque deposition, hyperphosphorylation of tau, synaptic plasticity impairments, neuroinflammation, and brain-gut-axis dysregulation. The review also encapsulates the therapeutic strategies of CM, which encompass monomers, formulae, and acupuncture. These strategies modulate MG polarization in the context of AD treatment, thereby providing a robust theoretical framework in which to conduct future investigative endeavors in both the clinical and preclinical realms.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":" ","pages":"2255-2275"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142901386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Catalpol from <i>Rehmannia glutinosa</i> Targets Nrf2/NF-κB Signaling Pathway to Improve Renal Anemia and Fibrosis.","authors":"Zhi-Hui Liu, Qing-Yang Xu, Yu Wang, Hong-Xin Gao, Ya-Hong Min, Xiao-Wen Jiang, Wen-Hui Yu","doi":"10.1142/S0192415X24500575","DOIUrl":"10.1142/S0192415X24500575","url":null,"abstract":"<p><p><i>Rehmannia glutinosa</i> is widely recognized as a prominent medicinal herb employed by practitioners across various generations for the purpose of fortifying kidney yin. Within <i>Rehmannia glutinosa</i>, the compound known as catalpol (CAT) holds significant importance as a bioactive constituent. However, the protective effects of CAT on kidneys, including ameliorative effects on chronic kidney disease - most prominently renal anemia and renal fibrosis - have not been clearly defined. In this study, the kidney injury model of NRK-52E cells and C57BL/6N male mice was prepared by exposure to aristolochic acid I (AA-I), and it was discovered that CAT could ameliorate oxidative stress injury, inflammatory injury, apoptosis, renal anemia, renal fibrosis, and other renal injuries both <i>in vivo</i> and <i>in vitro</i>. Further treatment of NRK-52E cells with Nrf2 inhibitors (ML385) and activators (ML334), as well as NF-κB inhibitors (PDTC), validated CAT's ability to target Nrf2 activation. Furthermore, the expression of phosphorylated NF-κB p65, IL-6, and Cleaved-Caspase3 protein was inhibited. CAT also inhibited NF-κB, and then inhibited the expression of IL-6, p-STAS3, TGF-β1 protein. Therefore, CAT can regulate Nrf2/NF-κB signaling pathway, significantly correct renal anemia and renal fibrosis, and is conducive to the preservation of renal structure and function, thus achieving a protective effect on the kidneys.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":" ","pages":"1451-1485"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141794458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}