{"title":"Coumarin 153, a solvatochromic fluorescent probe, for analyzing the biodiesel blends derived from various feedstocks.","authors":"Dineshbabu Takkella, Sudhanshu Sharma, Krishna Gavvala","doi":"10.1016/j.saa.2025.125755","DOIUrl":"10.1016/j.saa.2025.125755","url":null,"abstract":"<p><p>Biodiesel is renewable energy source an alternative to conventional fossil fuels. The primary concern lies in detecting alcohol content in biodiesel, which can either be intentionally added by adulterants or remain in trace amounts from the refining process of biodiesel synthesis. In order to regulate the quality of biodiesel production, it is crucial to develop an analytical method for monitoring alcohol content in biodiesel. Present study identified Coumarin 153 (C-153) with outstanding solvatochromic characteristics in multiple biodiesel feedstocks (soybean, canola, sesame, and corn). Based on our spectroscopic investigations, this alcohol (methanol, ethanol, and propanol) sensing method has proven to be rapid, sensitive, ratiometric, and visually discernible, and the detection limit for ethanol in soybean biodiesel could reach 0.23 % v/v. The percentage of alcohol (0-100 % v/v) in the biodiesel determines significant changes in the lifetime values of the C-153 from 5.1 ns to 0.35 ns. Moreover, we depict explicit solvation models (ethanol) and implicit solvation models (biodiesel) from quantum chemical calculations to explain the experimental results. Based on our study, C-153 with alcohol sensing capabilities seems to have potential applications in biodiesel analysis. The present results will inspire future efforts to simplify and optimize the detection of alcohol in biodiesel by using optical methods.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"330 ","pages":"125755"},"PeriodicalIF":0.0,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143030587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Alkenyl pheromones: Raman spectroscopic analysis, DFT modeling, and machine learning for stereoisomerism evaluation.","authors":"Iuliana Vasian, Camelia Berghian-Grosan","doi":"10.1016/j.saa.2025.125720","DOIUrl":"10.1016/j.saa.2025.125720","url":null,"abstract":"<p><p>Alkenyl pheromones are a class of insect sex pheromones that are characterized by the presence of one or more double bonds, which can be either in the E(trans) or Z(cis) configuration. This structural variation is essential in mating, as it influences reproductive behavior and provides a potential method for insect control. As a base for rapid and in-situ screening of synthetic pheromones or pheromone-based products, this study explores the potential of Raman spectroscopy to differentiate between the two geometrical isomers, E(trans) and Z(cis), of the alkenyl pheromones. As a case study, four types of pheromones were analyzed: 5-decen-1-ol, 8-dodecyl acetate, 9-dodecyl acetate, and 10-dodecyl acetate; in the latter case, the E(trans) isomer was particularly investigated. In this regard, a detailed analysis of their experimental Raman spectra has been realized along with a DFT-based study of the investigated compounds. Moreover, to find the best machine learning (ML) model that can efficiently identify the E(trans) or Z(cis) isomers of alkenyl pheromones, several algorithms and two different designs of datasets were tested. The results indicate that the ML models could identify patterns and accurately predict the class even if the training dataset contains both experimental and theoretical data.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"330 ","pages":"125720"},"PeriodicalIF":0.0,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143019106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MUA-modified Au nanocluster-driven fluorescence sensor for chromatographic test strips-based visual detection of patulin.","authors":"Hongcheng Gao, Zhenzhen Xie, Shihao Xu, Changlong Jiang","doi":"10.1016/j.saa.2025.125736","DOIUrl":"10.1016/j.saa.2025.125736","url":null,"abstract":"<p><p>The relationship between human health and patulin (PAT) in the diet is a complex and intertwined one. The development of a sensing approach for the field detection of patulin is crucial, as the current approach lacks real-time detection capabilities and is costly in terms of material and technology. This paper presents a portable ratiometric fluorescence sensor that can be used to rapidly, accurately, and efficiently detect patulin in food items at the point of origin. The sensor employs a combination of sulfhydryl functionalized gold nanoclusters (MUA-AuNCs) and blue emission carbon dots (B-CDs), which have been engineered to serve as highly effective \"on-off\" nanoprobes. The modified sulfhydryl (SH) groups present on the gold clusters serve as specific recognition sites for patulin binding. The probes exhibit a discernible shift in hue, from orange-red to blue. The sensitivity detection limit (LOD) for patulin was found to be 0.019 μM, with a substantial linear correlation observed in the range of 0-2.2 μM. The objective of the combined chromatographic test strip and color recognition platform was to facilitate the sensitive, accurate, and real-time detection of patulin in foodstuffs, which is of paramount importance for the prevention of early disease. To facilitate rapid and straightforward preliminary testing of food security, it is anticipated that the integrated chromatographic strip ratiometric fluorescence sensing platform will be developed into portable home detection equipment.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"330 ","pages":"125736"},"PeriodicalIF":0.0,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143019212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kaili Wu, Long Yu, Yifei Sun, Mengyu Yin, Yunfei Lu, Zhaojing Yuan, Wenyuan Jiang, Ru Huang, Xiangxue Wang, Suhua Wang
{"title":"Fluorescence-enhanced detection of sulfide ions through tuning the structure-activity relationship of gold nanoclusters.","authors":"Kaili Wu, Long Yu, Yifei Sun, Mengyu Yin, Yunfei Lu, Zhaojing Yuan, Wenyuan Jiang, Ru Huang, Xiangxue Wang, Suhua Wang","doi":"10.1016/j.saa.2025.125711","DOIUrl":"10.1016/j.saa.2025.125711","url":null,"abstract":"<p><p>The concentration of S<sup>2-</sup> is a vital environmental indicator for evaluating the quality of source water, surface water, and wastewater, and it has a significant impact on biological systems, particularly human health. Therefore, it is crucial to detect S<sup>2-</sup> selectively and sensitively. In this study, we developed a simple and rapid one-pot method to prepare a gold nanocluster (BSA-AuNCs) probe for fluorescence-enhanced detection of S<sup>2-</sup> toxemia and analyzed the morphological characteristics of BSA-AuNCs and its complex with S<sup>2-</sup> using various characterization techniques. The principle of the sensor is based on the interaction between S<sup>2-</sup> and amino acids in the BSA molecular layer coated with gold clusters, regulating the rigid structure changes of gold clusters, and thus affecting the fluorescence properties of gold clusters. Through the specific interaction mechanism between proteins and gold-sulfur ions, this sensor exhibits excellent selectivity. It responds to S<sup>2-</sup> in the range of 0 to 30 μM, with a detection limit of 0.395 μM, and shows no response to other heavy metal ions, anions, or amino acids. The sensor is environmentally friendly, simple to operate, has strong practicability, good precision, and recovery rate, and has potential application value in biological and environmental fields.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"330 ","pages":"125711"},"PeriodicalIF":0.0,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143043920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Víctor Navarro-Esteve, Birgit Felderer, Guillermo Quintás, Julia Kuligowski, Bayden R Wood, David Pérez-Guaita
{"title":"Quantification and profiling of urine cells by integrated cytocentrifugation and infrared spectroscopy.","authors":"Víctor Navarro-Esteve, Birgit Felderer, Guillermo Quintás, Julia Kuligowski, Bayden R Wood, David Pérez-Guaita","doi":"10.1016/j.saa.2025.125734","DOIUrl":"10.1016/j.saa.2025.125734","url":null,"abstract":"<p><p>The presence of cells in urine and in particular White Blood Cells (WBCs) is often associated with Urinary Tract Infections (UTIs) and other diseases. Non-invasive screening of WBCs requires the development of cost-effective point of care diagnostic tools. Infrared (IR) spectroscopy has the potential to identify and quantify cells in urine. However, the quantification of cells by compact IR spectrophotometers can be hindered by the presence of highly concentrated interfering biomolecules. The use of separation procedures can assist in identifying and quantifying cells but reduces the point of care capabilities of the technology. In this study, we propose coupling cytocentrifugation with transflection IR spectroscopy for the isolation and quantification of cells in urine. Urine samples were spiked with monocytes and T-lymphocytes, cyto-centrifuged onto low-e slides and measured in transflection mode. An optional cell clean-up step, either performed before (by resuspending in PBS) or after the cytocentrifugation (by soaking the slide in water), was evaluated. In a first experiment using monocytes, IR band areas were linear (R<sup>2</sup> = 0.98) in the 8 × 10<sup>3</sup>-2 × 10<sup>5</sup> cells mL<sup>-1</sup> range, thus demonstrating the detection of cells at pathological numbers (pyuria, i.e., >10<sup>4</sup> WBCs mL<sup>-1</sup>). Secondly, to mimic real samples with varying cell types, urine samples containing both monocytes and T-lymphocytes were analysed to determine their concentration simultaneously. Partial Least Squares (PLS) regression enabled the simultaneous quantification of two types of different cells, yielding prediction errors of 2 × 10<sup>4</sup> cells mL<sup>-1</sup> for monocytes and 4 × 10<sup>4</sup> cells mL<sup>-1</sup> for T-lymphocytes. The results suggest that the technique has the potential to be implemented as a fast, simple, versatile, and cost-effective method for quantifying and profiling cells in urine.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"330 ","pages":"125734"},"PeriodicalIF":0.0,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143043921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Self-driven and self-catalytic tripedal DNA nanomachine for rapid and sensitive detection of miR-21 in in colorectal cancer.","authors":"Qin Ma, Yilong Tu, Wen Yun, Mingming Zhang","doi":"10.1016/j.saa.2025.125757","DOIUrl":"10.1016/j.saa.2025.125757","url":null,"abstract":"<p><p>A self-driven and self-catalytic (SDSC) tripedal DNA nanomachine was developed for microRNA-21 (miR-21) detection. The microRNA could open one arm of tripedal DNA nanomachine to form DNAzyme with a nearby arm through the proximity effect. After DNAzyme's cleavage, the exposed DNA arm region competed with the third arm and produced a DNA segment (sequence Q). The released sequence Q initiated the next SDSC cycle of tripedal DNA nanomachine. In the special DNA nanomachines design, the components with close spatial localization were constructed on a single nanostructure, which significantly increased local reactant concentrations and reaction rates. A dynamic correlation was obtained from 10 pM to 50 nM between fluorescence signal and miR-21 concentration. The effective concentration of reactant greatly increased, compared with the free diffusible reactants. Consequently, the incubation time was significantly shorted to 35 min. This strategy showed a promising potential in miRNA detection and disease diagnosis.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"330 ","pages":"125757"},"PeriodicalIF":0.0,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143019282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The impact of halogen substitution quantities on the fluorescence intensity ratio of lanthanide Schiff base complexes.","authors":"Meifen Huang, Liang Jiao, Hao Ai, Qiong Xu, Xiangying Li, Qiushuo Li, Qiong Wu","doi":"10.1016/j.saa.2024.125668","DOIUrl":"10.1016/j.saa.2024.125668","url":null,"abstract":"<p><p>The signal intensity ratio (SIR) is a crucial factor in advancing probe technology due to its direct impact on sensitivity and precision, particularly in applications such as medical imaging, environmental monitoring, and food safety testing. However, the development of high-SIR probes is challenged by complexities in fabrication, cost, and mechanical stability. In this study, we address these limitations by investigating the role of halogen atom substitutions in modulating the intermolecular binding energy and aggregation behavior of Ce-Salen Schiff base complexes. We synthesized a novel Schiff base pH probe, Ce-3,5-Cl-Salpn (3,5-Cl-Salpn = N, N'-bis (3,5-dichlorosalicylidene)ethylene-1,3-diaminopropane), and introduced its analogues Ce-5-Cl-Salpn (5-Cl-Salpn = N, N'-bis (5-chlorosalicylidene)ethylene-1,3-diaminopropane) and Ce-Salpn (Salpn = N, N'-bis (salicylidene)ethylene-1,3-diaminopropane) for comparative analysis. Through fluorescence measurements, single-crystal analysis, and theoretical calculations, we demonstrate that halogen substitution leads to significant modulation of fluorescence intensity and SIR in the pH range of 6.0 to 7.0. Notably, Ce-3,5-Cl-Salpn exhibited the highest SIR, with a 182.5-fold increase, compared to the non-halogenated variant's 9.2-fold rise. Frontier molecular orbital (FMO) analysis revealed a reduction in the HOMO-LUMO energy gap as halogen substitution increased, resulting in enhanced optical properties and more efficient electronic transitions. Additionally, binding energy calculations confirmed that halogen atoms strengthen intermolecular interactions, thereby improving molecular stability and aggregation-caused quenching effects.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"330 ","pages":"125668"},"PeriodicalIF":0.0,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142924358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongkun Zhao, Chunning Chen, Yalei Wang, Jiaqi Liu, Jiaxin Lu, Jingtong Zhai, Rui Li, Nan Lu
{"title":"A paper-based SERS/colorimetry substrate for reliable detection.","authors":"Hongkun Zhao, Chunning Chen, Yalei Wang, Jiaqi Liu, Jiaxin Lu, Jingtong Zhai, Rui Li, Nan Lu","doi":"10.1016/j.saa.2025.125731","DOIUrl":"10.1016/j.saa.2025.125731","url":null,"abstract":"<p><p>For on-site analysis, the combination of surface enhanced Raman scattering (SERS) and colorimetry, as a dual-mode detection, can effectively improve the accuracy of detection, and reduce the influence of instrument fluctuation, which greatly improves the accuracy and reliability of the results. However, the preparation of SERS/colorimetry substrates are usually time-consuming and costly, which limits their practical applications. In this paper, a hydrophobic paper-based SERS/colorimetry substrate can be prepared by a simple spraying method. The hydrophobicity is introduced by the structures formed with polydimethylsiloxane and polymethylmethacrylate, which leads to high detection sensitivity due to its enrichment effect. Moreover, the electrostatic interaction between Ag nanoparticles and the analytes further enhances the performance of SERS and colorimetry in detection of thiram and aspartame. It also provides a new method for the detection of aspartame with colorimetry. Finally, the detection limits of SERS and colorimetry for thiram and aspartame are 0.1 mg/L and 0.1 g/L, 1 mg/L and 0.1 g/L, respectively. The paper-based SERS/colorimetry substrate makes the results more reliable through dual-mode detection, which shows great potential in the detection of real samples.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"330 ","pages":"125731"},"PeriodicalIF":0.0,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143018716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanli Du, Ying Jin, Kai Yan, Yunfei Li, Yuqi Wang, Shengda Liu, Guixia Liu, Jinxian Wang, Wensheng Yu, Xiangting Dong
{"title":"Tunable luminescence in Eu<sup>3+</sup>/Sm<sup>3+</sup> doped Na<sub>2</sub>YMg<sub>2</sub>V<sub>3</sub>O<sub>12</sub> for WLEDs and optical thermometry.","authors":"Yanli Du, Ying Jin, Kai Yan, Yunfei Li, Yuqi Wang, Shengda Liu, Guixia Liu, Jinxian Wang, Wensheng Yu, Xiangting Dong","doi":"10.1016/j.saa.2025.125759","DOIUrl":"10.1016/j.saa.2025.125759","url":null,"abstract":"<p><p>In recent years, it has become a development trend to design multi-application luminescent materials with rare earth ion doping. In this work, a series of Eu<sup>3+</sup>/Sm<sup>3+</sup> doped self-activated Na<sub>2</sub>YMg<sub>2</sub>V<sub>3</sub>O<sub>12</sub> (NYMVO) phosphors were synthesized through a simple high-temperature solid-state reaction method. Interestingly, due to the energy transfer (ET) from the matrix to the activators, the luminescence color of the phosphors changed from turquoise to orange-red and yellow-green under near-ultraviolet (n-UV) 365 nm excitation. Based on the fluorescence intensity ratio of the matrix to Eu<sup>3+</sup>/Sm<sup>3+</sup>, the optical thermometry performances of the NYMVO:0.20Eu<sup>3+</sup> and NYMVO:0.06Sm<sup>3+</sup> phosphors were described. Notably, the maximum absolute sensitivity (S<sub>a</sub>) values for NYMVO:0.20Eu<sup>3+</sup> and NYMVO:0.06Sm<sup>3+</sup> phosphors were 0.30 K<sup>-1</sup> and 0.032 K<sup>-1</sup>, respectively. Correspondingly, the maximum relative sensitivity (S<sub>r</sub>) values were 2.17 %K<sup>-1</sup> and 1.22 %K<sup>-1</sup>, respectively. Moreover, the light-emitting devices based on NYMVO:0.20Eu<sup>3+</sup> and NYMVO:0.06Sm<sup>3+</sup> phosphors had excellent optical properties, with correlated color temperature (CCT) of 4552 K and 4470 K, and color-rendering index (CRI) of 84.6 and 88.5. These results suggested that the two vanadate phosphors prepared had potential applications in both warm white light-emitting diodes (WLEDs) and optical thermometry.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"330 ","pages":"125759"},"PeriodicalIF":0.0,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143043923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dual-mode ratiometric fluorescent and colorimetric sensor for rapid visual detection of Hg<sup>2+</sup> using poly(T)-tailed ssDNA-silver nanoclusters.","authors":"Yu Zou, Ying Zhang, Hui Zhu Wang, Meng Wei Jiang, Guo Feng Gui, Dong Fu, Wang Ren","doi":"10.1016/j.saa.2025.125751","DOIUrl":"10.1016/j.saa.2025.125751","url":null,"abstract":"<p><p>Rapid, sensitive, and accurate detection of heavy metal ions is significant for human health and ecological security. Herein, a novel single-stranded DNA with poly(thymidine) tail is tactfully designed as template to synthesize dual-emission silver nanoclusters (ssDNA-AgNCs). The obtained AgNCs simultaneously emit red and green fluorescence, and the red emission can be selectively quenched by Hg<sup>2+</sup>, meanwhile the green emission of AgNCs increases synchronously. Thus ssDNA-AgNCs as a single probe shows excellent ratiometric fluorescence sensing for Hg<sup>2+</sup> with a detection limit of 0.2 nM, and Hg<sup>2+</sup> as low as 10.0 nM can be fluorescently identified by naked eye within 5 min. Moreover, the proposed nanoprobe also exhibits a good ratiometric colorimetric sensing for Hg<sup>2+</sup>, and the obvious color change of nanoprobe also enables a rapid and visual monitoring of Hg<sup>2+</sup> under visible light. The dual mode ratiometric response of Hg<sup>2+</sup> can be ascribed to the rapid redox reaction between Hg<sup>2+</sup> and Ag<sup>0</sup> on the surface of AgNCs and the subsequent formation of silver amalgam. The resultant dual-mode ratiometric sensor has been successfully applied to the determination of Hg<sup>2+</sup> in environmental water samples. This study provides a new strategy to synthesize dual-emission AgNCs by scientifically designing terminus sequence of ssDNA template, and develops a facile and efficient single-probe and dual-mode ratiometric sensor for visual monitoring of Hg<sup>2+</sup>.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"330 ","pages":"125751"},"PeriodicalIF":0.0,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143019177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}