Soft roboticsPub Date : 2025-10-01Epub Date: 2025-02-24DOI: 10.1089/soro.2024.0141
Shuoqi Wang, Keng-Yu Lin, Xiangru Xu, Michael Wehner
{"title":"A Holistic Indirect Contact Identification Method for Soft Robot Proprioception.","authors":"Shuoqi Wang, Keng-Yu Lin, Xiangru Xu, Michael Wehner","doi":"10.1089/soro.2024.0141","DOIUrl":"10.1089/soro.2024.0141","url":null,"abstract":"<p><p>Soft robots hold great promise but are notoriously difficult to control due to their compliance and back-drivability. In order to implement useful controllers, improved methods of perceiving robot pose (position and orientation of the entire robot body) in free and perturbed states are needed. In this work, we present a holistic approach to robot pose perception in free bending and with external contact, using multiple soft strain sensors on the robot (not collocated with the point of contact). By comparing the deviation of these sensors from their value in an unperturbed pose, we are able to perceive the mode and magnitude of deformation and thereby estimate the resulting perturbed pose of the soft actuator. We develop a sample 2 degree-of-freedom soft finger with two sensors, and we characterize sensor response to front, lateral, and twist deformation to perceive the mode and magnitude of external perturbation. We develop a data-driven model of free-bending deformation, we impose our perturbation perception method, and we demonstrate the ability to perceive perturbed pose on a single-finger and a two-finger gripper. Our holistic contact identification method provides a generalizable approach to perturbed pose perception needed for the control of soft robots.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"578-592"},"PeriodicalIF":6.1,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143485110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soft roboticsPub Date : 2025-10-01Epub Date: 2025-03-11DOI: 10.1089/soro.2024.0166
Wenbo Xue, Liuchao Jin, Bingcong Jian, Qi Ge
{"title":"Origami-Based Flexible Robotic Grippers via Hard-Soft Coupled Multimaterial 3D Printing.","authors":"Wenbo Xue, Liuchao Jin, Bingcong Jian, Qi Ge","doi":"10.1089/soro.2024.0166","DOIUrl":"10.1089/soro.2024.0166","url":null,"abstract":"<p><p>This study explores the design and performance of origami robotic grippers fabricated through hard-soft coupled multimaterial three-dimensional (3D) printing. We evaluate the impact of design parameters on the kinematic behavior and mechanical functionality of the gripper. A kinematic model is employed to characterize the reachable workspace and motion capabilities, revealing that variations in geometric parameters significantly influence the origami gripper's performance. Furthermore, we explore the mechanical properties of the gripper by manipulating parameters such as soft hinge thickness and crease design, establishing a comprehensive relationship between geometric design and mechanical response. Experimental evaluations demonstrate the interplay between bending angle, force-displacement characteristics, and stiffness in the origami grippers. This research contributes to the optimization of origami-inspired robotic structures, highlighting the potential of multimaterial 3D printing techniques in developing flexible, adaptive, and efficient robotic applications.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"537-552"},"PeriodicalIF":6.1,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143607603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soft roboticsPub Date : 2025-10-01Epub Date: 2025-04-09DOI: 10.1089/soro.2024.0152
Feiyang Yuan, Lufeng Tian, Haoyuan Xu, Zhongqiang Fu, Wenjie Wu, Zhexin Xie, Bo Yuan, Tianmiao Wang, Xilun Ding, Li Wen
{"title":"A Sensorized Mechanically Self-Guided Suction Cup for Improved Adhesion in Complex Environments.","authors":"Feiyang Yuan, Lufeng Tian, Haoyuan Xu, Zhongqiang Fu, Wenjie Wu, Zhexin Xie, Bo Yuan, Tianmiao Wang, Xilun Ding, Li Wen","doi":"10.1089/soro.2024.0152","DOIUrl":"10.1089/soro.2024.0152","url":null,"abstract":"<p><p>Octopuses can effectively interact with environments using their agile suction cups, in which abundant neuroreceptors are embodied inside. Inspired by this, we proposed an electronics-integrated self-guided adhesive suction cup (E-SGAS) capable of environmental sensing and adaptively adhesion on diverse surfaces. E-SGAS features an inflatable adhesive membrane and an under-actuated design, enabling it to adapt to various angles and surface roughness under low preloads. A theoretical model is presented to predict self-guided adhesion outcomes. The integrated multilayer stretchable liquid metal sensory circuit (with a maximum deformation rate of 186%) in the adhesive membrane allows for detecting expansion, contact, suction, leakage, and surface roughness. E-SGAS can also process the sensory information to guide intelligent gripping in various complex environments. Experimental results demonstrate the ability of E-SGAS to autonomously grip under a preload force of 0.11 N, a maximum adhesion force of 57.9N, and a detachment force of only 0.34 N. It can adhere to surfaces up to 60-grit roughness and accommodate a surface with a relative angle of 90°. We also show that E-SGAS can capture flying objects or work in a confined space. The proposed adhesion and sensing strategies aim to enhance the performance and expand the application range of suction cup-like grippers. E-SGAS's results can provide design insights into creating stretchable electronics-integrated bioinspired adhesive systems that can interact with unconstructed environments.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"553-565"},"PeriodicalIF":6.1,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143813227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soft roboticsPub Date : 2025-10-01Epub Date: 2025-04-04DOI: 10.1089/soro.2024.0009
Koki Tanaka, Matthew Spenko
{"title":"An Interconnected Soft Modular Robot with Locomotive Modules and Flexible Structures Actuated Through a Single Method.","authors":"Koki Tanaka, Matthew Spenko","doi":"10.1089/soro.2024.0009","DOIUrl":"10.1089/soro.2024.0009","url":null,"abstract":"<p><p>This article presents a unique soft robot comprised of highly compliant locomotive modules interconnected with jamming-capable flexible envelopes. The modules incorporate origami-inspired actuators and suction cups for robust omnidirectional locomotion, acting as collective elements that drive the system's movement and control. The flexible envelopes enable dynamic interactions with the environment through stiffness modulation via granular jamming. A unified pneumatic actuation system consolidates all robot functions, simplifying the mechanical architecture. The system's capabilities are demonstrated through shape formation, object grasping and transportation, obstacle navigation, and diverse terrain locomotion experiments, highlighting its adaptability and cooperative nature. Furthermore, a simulation-based design optimization approach using a genetic algorithm enhances the system's grasping performance by exploring the different module and envelope configurations. The interconnected soft robot system represents a unique fusion of highly compliant modules and bodies, advancing modular soft robotics for effective environmental interactions.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"640-651"},"PeriodicalIF":6.1,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143782307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soft roboticsPub Date : 2025-10-01Epub Date: 2025-04-02DOI: 10.1089/soro.2024.0137
Lance P Hyatt, Philip R Buskohl, Ryan L Harne, Jared J Butler
{"title":"Harnessing Liquid Crystal Elastomers for Locomotion and Mechanical Intelligence in a Soft Robot.","authors":"Lance P Hyatt, Philip R Buskohl, Ryan L Harne, Jared J Butler","doi":"10.1089/soro.2024.0137","DOIUrl":"10.1089/soro.2024.0137","url":null,"abstract":"<p><p>Recently, there has been an increased interest in endowing intelligent behaviors and features in soft robotic systems. As a prerequisite for intelligence, a system must integrate sensing, information processing, and the ability to act in response to external stimuli. This work presents a soft robotic crawler that demonstrates locomotion using electroactive liquid crystal elastomers (LCEs). By integrating independent components such as a photo-responsive LCE switch into a conductive electromechanical processing network based on sequential logic, the robot can sense optical indicators and process this information to change direction autonomously. This study expands the design of the individual mechanical material subsystems and experimentally showcases the autonomous operation of the soft robot. The embedded bistable mechanism stores the present operational state of the robot and enforces directional locomotion by controlling the position of a mechanical hard stop that interfaces with the legs. The robot exemplifies the advanced potential of soft intelligent material systems for complex autonomous behavior, leveraging the unique properties of LCEs and a mechanical-electrical network for information processing without the need for traditional electronic controllers.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"631-639"},"PeriodicalIF":6.1,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143766182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soft roboticsPub Date : 2025-10-01Epub Date: 2025-06-04DOI: 10.1089/soro.2024.0154
Quan Xiong, Xuanyi Zhou, Dannuo Li, Gavril Tan, Daniela Rus, Raye Chen-Hua Yeow
{"title":"Electrohydraulic Jammed Variable Stiffness Robotic Link.","authors":"Quan Xiong, Xuanyi Zhou, Dannuo Li, Gavril Tan, Daniela Rus, Raye Chen-Hua Yeow","doi":"10.1089/soro.2024.0154","DOIUrl":"10.1089/soro.2024.0154","url":null,"abstract":"<p><p>Robotic links play a vital role in transmitting force and torque, ensuring precise robotic movements. Traditional rigid links, typically made from metals, pose a risk of injury in human-robot interactions or damage to other objects due to their noncompliant and stiff nature and have limited adaptability across various tasks. Variable stiffness robotic links (VSRLs) using hydraulically amplified self-healing electrostatic (HASEL) actuators offer a solution, enhancing safety and adaptability while maintaining precision. This study introduces an electrohydraulic jammed VSRL utilizing a strip-shaped HASEL actuator, which stiffens upon application of high-voltage, pressurizing dielectric liquid encased in a dielectric bladder to achieve stiffness variations up to 8.3 times. The VSRL, optimized by adjusting liquid volume and sealing patterns, is lightweight and compact and eliminates the need for bulky pumps and motors. It also functions as a capacitor, enabling a self-sensing strategy to detect deformation. Experimental results demonstrate significant stiffness variability and effective load-bearing capabilities. Multi-VSRL assemblies further enhance stiffness for practical applications, including collaborative robotic links and wearable robots for joint support. A unique drone application showcases the VSRL's potential for energy-efficient aerial operations. The proposed VSRL represents a promising advancement in robotic technology, offering improved safety, adaptability, and functionality for diverse real-world applications.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"652-661"},"PeriodicalIF":6.1,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144228149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soft roboticsPub Date : 2025-10-01Epub Date: 2025-02-17DOI: 10.1089/soro.2024.0107
Yichuan Wu, Lai Cao, Guobin Lu, Bei Peng, Qi Lu, Yi Song, Stanislav Gorb
{"title":"An Untethered Soft Snail Robot Steers with a Single Motor.","authors":"Yichuan Wu, Lai Cao, Guobin Lu, Bei Peng, Qi Lu, Yi Song, Stanislav Gorb","doi":"10.1089/soro.2024.0107","DOIUrl":"10.1089/soro.2024.0107","url":null,"abstract":"<p><p>Achieving strong adaptability and high-load capacity for small-scale soft robots remains a challenge in current robotics engineering. In this study, inspired by a snail movement, we developed a soft crawling robot capable of controllable locomotion and carrying a load of 204 g-7.7 times its own weight-using just one single motor for robot control. The robot measures 7.6 cm in length, 3 cm in width, and 2.5 cm in height, with a total weight of 26.5 g. The anisotropic friction mechanism on the robot's bottom, comprising a soft origami-based pad and asymmetrical sawtooth structure, enables its strong adhesion to stick to and simultaneously crawl (transitional adhesion) on many surfaces. This design allows the robot to move at speeds up to 3 mm/s and climb a slope of 35° inclinations, also making it suitable for various uneven terrains. Additionally, the robot has enhanced cross-environmental capabilities due to its ability to glide on the water. This research advances the development of relatively simple small-scale single-actuator robots, providing insights into their potential for flexible movement, high-load capacity, and potential swarming behavior.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"619-630"},"PeriodicalIF":6.1,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143434678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adaptive and Robust Switchable Adhesion System: Bio-Inspired Synergistic Integration from Octopuses and Geckos.","authors":"Zhiyuan Weng, Zhouyi Wang, Chi Xu, Qingsong Yuan, Bingcheng Wang, Wenxin Zhao, Yunlong Duan, Junshen Yao, Peiqing Zhang, Qianzhi Wang, Zhendong Dai","doi":"10.1089/soro.2024.0097","DOIUrl":"10.1089/soro.2024.0097","url":null,"abstract":"<p><p>Existing climbing robots achieve stable movements on limited surface types. However, adapting a single robot design to various surface shapes remains a substantial challenge. Based on the van der Waals (vdW) force-mediated adhesion mechanism of a gecko foot and negative pressure from octopus suckers, this study introduces a biomimetic integration strategy for designing and fabricating a pneumatically actuated switchable adhesion system (SAS). The SAS includes an adhesive material responsible for generating vdW forces and a suction cup with a membrane structure that enables a vacuum suction force. Owing to nonlinear superposition effects, this SAS exhibited a 56.4% higher adhesion force than the algebraic superposition of the vdW and vacuum suction forces. Moreover, the SAS offers a quick switch between adhesion and detachment through pneumatic modulation, achieving a synergistic balance between adaptability, robustness, and load-bearing efficiency. Equipped with this SAS, we developed a pneumo-electrically actuated quadruped-climbing robot that can climb planes with different tilt angles and surfaces with different curvatures.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"606-618"},"PeriodicalIF":6.1,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143470402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soft roboticsPub Date : 2025-10-01Epub Date: 2025-03-13DOI: 10.1089/soro.2024.0113
Kyu Bum Kim, Hyungmin Choi, Byungchul Kim, Brian Byunghyun Kang, Sangheui Cheon, Kyu-Jin Cho
{"title":"Exo-Glove Poly III: Grasp Assistance by Modulating Thumb and Finger Motion Sequence with a Single Actuator.","authors":"Kyu Bum Kim, Hyungmin Choi, Byungchul Kim, Brian Byunghyun Kang, Sangheui Cheon, Kyu-Jin Cho","doi":"10.1089/soro.2024.0113","DOIUrl":"10.1089/soro.2024.0113","url":null,"abstract":"<p><p>In daily living, people grasp an object through the steps of \"pre-shaping\" and \"enclosing,\" with the thumb playing a crucial role with its multiple degrees of freedom. When assisting individuals with hand impairments using soft wearable robots, it is important to simplify the robot by reducing the number of actuators and to provide different grasping strategies based on various objects being handled. In this article, we propose a tendon-driven soft wearable hand robot, Exo-Glove Poly III, that uses a single actuator for assisting two types of grasping strategies for people with hand impairment. To move the thumb and other fingers with a single actuator, we developed a slack-based sequential mechanism that allows movements to occur at different timings by varying the initial slack lengths of each tendon. Based on our observations of grasping strategies and the proposed novel actuation system, a slack-based sequential actuator (318 g, including electronic circuits) was designed and integrated with the glove (90 g) using a commercial armband to make the system portable. The robotic system was evaluated by a healthy subject, showing how the thumb moves by the tendon routings and how the mechanism works for each grasping strategy.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"593-605"},"PeriodicalIF":6.1,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143627361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design, Modeling, and Control of a Soft Abdominal Compression Robot for Respiratory Assistance.","authors":"Shaoke Yuan, Sipeng Zhou, Yuxuan Wang, Mingming Hou, Yanqiong Fei","doi":"10.1089/soro.2024.0088","DOIUrl":"10.1089/soro.2024.0088","url":null,"abstract":"<p><p>Respiratory assistance is commonly used to treat respiratory system diseases or support postoperative recovery, playing a crucial role in patient rehabilitation. However, existing respiratory assistance devices rely on rigid systems, which may pose risks to the human body. To address this, we propose a novel soft abdominal compression robot for respiratory assistance (SACR-RA), which offers personalized and adaptive support. This novel ability is achieved by dynamically adjusting the pressure applied to the abdomen in real-time on the basis of the user's respiratory characteristics. First, we developed a pressure-deformation model for soft pneumatic actuators and confirmed its accuracy through experiments. Next, we developed a human respiratory model that links respiratory assistance levels to lung conditions, enabling flexible adjustment of control strategies on the basis of the user's condition. Accordingly, we designed respiratory pattern control and respiratory intensity control strategies to ensure adaptable support for the user's respiratory needs. Finally, we validated the effectiveness of SACR-RA through respiratory flow and electromyography experiments. The results demonstrated that SACR-RA significantly improves the exchange of air between the user and the environment and reduces the burden on respiratory muscles.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"566-577"},"PeriodicalIF":6.1,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143733595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}