电液阻塞变刚度机器人连杆。

Quan Xiong, Xuanyi Zhou, Dannuo Li, Gavril Tan, Daniela Rus, Raye Chen-Hua Yeow
{"title":"电液阻塞变刚度机器人连杆。","authors":"Quan Xiong, Xuanyi Zhou, Dannuo Li, Gavril Tan, Daniela Rus, Raye Chen-Hua Yeow","doi":"10.1089/soro.2024.0154","DOIUrl":null,"url":null,"abstract":"<p><p>Robotic links play a vital role in transmitting force and torque, ensuring precise robotic movements. Traditional rigid links, typically made from metals, pose a risk of injury in human-robot interactions or damage to other objects due to their noncompliant and stiff nature and have limited adaptability across various tasks. Variable stiffness robotic links (VSRLs) using hydraulically amplified self-healing electrostatic (HASEL) actuators offer a solution, enhancing safety and adaptability while maintaining precision. This study introduces an electrohydraulic jammed VSRL utilizing a strip-shaped HASEL actuator, which stiffens upon application of high-voltage, pressurizing dielectric liquid encased in a dielectric bladder to achieve stiffness variations up to 8.3 times. The VSRL, optimized by adjusting liquid volume and sealing patterns, is lightweight and compact and eliminates the need for bulky pumps and motors. It also functions as a capacitor, enabling a self-sensing strategy to detect deformation. Experimental results demonstrate significant stiffness variability and effective load-bearing capabilities. Multi-VSRL assemblies further enhance stiffness for practical applications, including collaborative robotic links and wearable robots for joint support. A unique drone application showcases the VSRL's potential for energy-efficient aerial operations. The proposed VSRL represents a promising advancement in robotic technology, offering improved safety, adaptability, and functionality for diverse real-world applications.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrohydraulic Jammed Variable Stiffness Robotic Link.\",\"authors\":\"Quan Xiong, Xuanyi Zhou, Dannuo Li, Gavril Tan, Daniela Rus, Raye Chen-Hua Yeow\",\"doi\":\"10.1089/soro.2024.0154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Robotic links play a vital role in transmitting force and torque, ensuring precise robotic movements. Traditional rigid links, typically made from metals, pose a risk of injury in human-robot interactions or damage to other objects due to their noncompliant and stiff nature and have limited adaptability across various tasks. Variable stiffness robotic links (VSRLs) using hydraulically amplified self-healing electrostatic (HASEL) actuators offer a solution, enhancing safety and adaptability while maintaining precision. This study introduces an electrohydraulic jammed VSRL utilizing a strip-shaped HASEL actuator, which stiffens upon application of high-voltage, pressurizing dielectric liquid encased in a dielectric bladder to achieve stiffness variations up to 8.3 times. The VSRL, optimized by adjusting liquid volume and sealing patterns, is lightweight and compact and eliminates the need for bulky pumps and motors. It also functions as a capacitor, enabling a self-sensing strategy to detect deformation. Experimental results demonstrate significant stiffness variability and effective load-bearing capabilities. Multi-VSRL assemblies further enhance stiffness for practical applications, including collaborative robotic links and wearable robots for joint support. A unique drone application showcases the VSRL's potential for energy-efficient aerial operations. The proposed VSRL represents a promising advancement in robotic technology, offering improved safety, adaptability, and functionality for diverse real-world applications.</p>\",\"PeriodicalId\":94210,\"journal\":{\"name\":\"Soft robotics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/soro.2024.0154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/soro.2024.0154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器人连杆在传递力和扭矩方面起着至关重要的作用,保证了机器人的精确运动。传统的刚性链接,通常由金属制成,由于其不顺应和僵硬的性质,在人机交互或损坏其他物体时造成伤害的风险,并且对各种任务的适应性有限。采用液压放大自愈静电(HASEL)执行器的变刚度机器人连杆(vsrl)提供了一种解决方案,在保持精度的同时提高了安全性和适应性。本研究介绍了一种利用条形HASEL致动器的电液堵塞VSRL,该致动器在高压作用下会变硬,对介电囊内的介电液体加压,使其刚度变化达到8.3倍。VSRL通过调整液体体积和密封模式进行了优化,重量轻,结构紧凑,无需笨重的泵和电机。它还可以作为电容器,实现自感知策略来检测变形。实验结果表明了显著的刚度变异性和有效的承载能力。多vsrl组件进一步提高了实际应用的刚度,包括协作机器人链接和用于关节支持的可穿戴机器人。一项独特的无人机应用展示了VSRL在节能空中操作方面的潜力。提出的VSRL代表了机器人技术的一个有前途的进步,为各种现实世界的应用提供了更好的安全性、适应性和功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrohydraulic Jammed Variable Stiffness Robotic Link.

Robotic links play a vital role in transmitting force and torque, ensuring precise robotic movements. Traditional rigid links, typically made from metals, pose a risk of injury in human-robot interactions or damage to other objects due to their noncompliant and stiff nature and have limited adaptability across various tasks. Variable stiffness robotic links (VSRLs) using hydraulically amplified self-healing electrostatic (HASEL) actuators offer a solution, enhancing safety and adaptability while maintaining precision. This study introduces an electrohydraulic jammed VSRL utilizing a strip-shaped HASEL actuator, which stiffens upon application of high-voltage, pressurizing dielectric liquid encased in a dielectric bladder to achieve stiffness variations up to 8.3 times. The VSRL, optimized by adjusting liquid volume and sealing patterns, is lightweight and compact and eliminates the need for bulky pumps and motors. It also functions as a capacitor, enabling a self-sensing strategy to detect deformation. Experimental results demonstrate significant stiffness variability and effective load-bearing capabilities. Multi-VSRL assemblies further enhance stiffness for practical applications, including collaborative robotic links and wearable robots for joint support. A unique drone application showcases the VSRL's potential for energy-efficient aerial operations. The proposed VSRL represents a promising advancement in robotic technology, offering improved safety, adaptability, and functionality for diverse real-world applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信