M. Kyogashima , K. Kamijima , N. Takai , T. Nakajima , T. Mikuma , H. Komamura , K. Asai , M. Ishihara , E. Sugiyama , N. Tanaka
{"title":"Expression of dihomo-γ-linolenic acid and FADS1/2 and ELOVL2/5 in term rabbit placentas","authors":"M. Kyogashima , K. Kamijima , N. Takai , T. Nakajima , T. Mikuma , H. Komamura , K. Asai , M. Ishihara , E. Sugiyama , N. Tanaka","doi":"10.1016/j.plefa.2024.102629","DOIUrl":"10.1016/j.plefa.2024.102629","url":null,"abstract":"<div><p>Long-chain polyunsaturated fatty acids (LCPUFAs) are essential for both fetal and placental development. We characterized the FA composition and gene expression levels of FA-metabolizing enzymes in rabbit placentas. Total FA compositions from term rabbit placentas (<em>n</em> = 7), livers, and plasma (both <em>n</em> = 4) were examined: among LCPUFAs with more than three double bonds, dihomo-γ-linolenic acid (DGLA) was the most abundant (11.4 ± 0.69 %, mean ± SE), while arachidonic acid was the second-most rich component (6.90 ± 0.56 %). DGLA was barely detectable (<1 %) in livers and plasma from term rabbits, which was significantly lower than in placentas (both <em>p</em> < 0.0001). Compared with the liver, transcript levels of the LCPUFA-metabolizing enzymes <em>FADS2</em> and <em>ELOVL5</em> were 7- and 4.5-fold higher in placentas (both <em>p</em> < 0.05), but levels of <em>FADS1</em> and <em>ELOVL2</em> were significantly lower (both <em>p</em> < 0.01). Our results suggest a placenta-specific enzyme expression pattern and LCPUFA profile in term rabbits, which may support a healthy pregnancy.</p></div>","PeriodicalId":94179,"journal":{"name":"Prostaglandins, leukotrienes, and essential fatty acids","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141604708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Beneficial effects of dietary omega 3 polyunsaturated fatty acids on offspring brain development in gestational diabetes mellitus","authors":"Nisha Kemse, Sunaina Chhetri, Sadhana Joshi","doi":"10.1016/j.plefa.2024.102632","DOIUrl":"10.1016/j.plefa.2024.102632","url":null,"abstract":"<div><p>Various mechanisms through which maternal diet influences offspring brain development in gestational diabetes mellitus (GDM) remains unclear. We speculate that prenatal omega 3 fatty acids will improve the levels of brain neurotrophins and vascular endothelial growth factor (VEGF), an angiogenic factor leading to improved cognitive performance in the offspring. GDM was induced in Wistar rats using streptozotocin. They were assigned to either control, GDM or GDM+O (GDM + omega-3 fatty acid supplementation). The offspring were followed till 3 mo of age and cognitive assessment was undertaken. Data analysis was carried out using one-way ANOVA followed by LSD test. GDM induction increased (<em>p</em> < 0.01) dam glucose levels and lowered brain derived neurotrophic factor (BDNF) levels (<em>p</em> = 0.056) in the offspring at birth. At 3 months, GDM group showed significantly lower levels of neurotrophic tyrosine kinase receptor-2 (NTRK-2) and VEGF, lower mRNA levels of NTRK-2 and cAMP response element-binding protein (CREB) (<em>P</em> < 0.05 for all) as compared to control. The GDM offspring had a higher escape latency (<em>p</em> < 0.01), made lesser % correct choices and more errors (<em>p</em> < 0.05 for both). Prenatal supplementation with omega 3 polyunsaturated fatty acids was beneficial since it ameliorated some of the adverse effects of GDM.</p></div>","PeriodicalId":94179,"journal":{"name":"Prostaglandins, leukotrienes, and essential fatty acids","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141639205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Resolvin D1 suppresses macrophage senescence and splenic fibrosis in aged mice","authors":"Anouk G. Groenen , Masharh Lipscomb , Ramon Bossardi Ramos , Sudeshna Sadhu , Venetia Bazioti , Gabrielle Fredman , Marit Westerterp","doi":"10.1016/j.plefa.2024.102634","DOIUrl":"10.1016/j.plefa.2024.102634","url":null,"abstract":"<div><p>Aging is associated with systemic, non-resolving inflammation and the accumulation of senescent cells. The resolution of inflammation (or inflammation-resolution) is in part mediated by the balance between specialized pro-resolving mediators (SPMs) and pro-inflammatory leukotrienes (LTs). Aged mice (<em>i.e.</em> 2 years of age) exhibit a significant decrease in the SPM:LT ratio in specific organs including the spleen, which suggests that this organ may exhibit heightened inflammation and may be particularly amenable to SPM therapy. Previous studies have shown that resolvin D1 (RvD1) is decreased in spleens of aged mice compared with young controls. Therefore, we asked whether treatment of RvD1 in aged mice would impact markers of cellular senescence in splenic macrophages, and downstream effects on splenic fibrosis, a hallmark of splenic aging. We found that in aged mice, both zymosan-elicited and splenic macrophages showed an increase in mRNA expression of inflammatory and eicosanoid biosynthesis genes and a dysregulation of genes involved in the cell cycle. Injections with RvD1 reversed these changes. Importantly, RvD1 also decreased splenic fibrosis, a hallmark of splenic aging. Our findings suggest that RvD1 treatment may limit several features of aging, including senescence and fibrosis in spleens from aged mice.</p><p>Summary</p><p>Aging is associated with systemic, low grade, non-resolving inflammation. The resolution of inflammation is in part mediated by the balance between specialized pro-resolving mediators (SPMs) and pro-inflammatory lipid mediators, like leukotrienes (LTs). A hallmark of aging is the accumulation of senescent cells that promote low grade inflammation by secreting pro-inflammatory cytokines and lipid mediators. Splenic macrophages contribute to systemic aging, and spleens of aged mice demonstrate decreased levels of the SPM called resolvin D1 (RvD1). Whether addition of RvD1 is protective in spleens of aged mice is unknown and is focus of this study. RvD1 treatment to aged mice led to decreased mRNA expression of markers of cellular senescence and inflammation in splenic macrophages compared with age-matched vehicle controls. Moreover, RvD1 decreased splenic fibrosis, which occurs due to persistent low-grade inflammation in aging. Promoting inflammation resolution with RvD1 thus limits macrophage senescence, pro-inflammatory signals and established splenic fibrosis in aging.</p></div>","PeriodicalId":94179,"journal":{"name":"Prostaglandins, leukotrienes, and essential fatty acids","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0952327824000280/pdfft?md5=ca1753c7b731d8b4498be533e5a9a91e&pid=1-s2.0-S0952327824000280-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142011783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Regular moderate physical activity potentially accelerates and strengthens both the pro-inflammatory and pro-resolving lipid mediator response after acute exercise stress","authors":"Linda Malan , Lizelle Zandberg , Cindy Pienaar , Arista Nienaber , Lize Havemann-Nel","doi":"10.1016/j.plefa.2024.102642","DOIUrl":"10.1016/j.plefa.2024.102642","url":null,"abstract":"<div><p>The PUFA-derived lipid mediator response shifts from pro-inflammatory to inflammation resolution over time and may be modified by regular moderate exercise. This pre-post-test study aimed to compare the expression of PTGES2 (COX2) and ALOX15 in leucocytes and the plasma 5- and 15-HETE, 18-HEPE and 17-HDHA responses after unaccustomed resistance exercise between 18–35-year-old male recreational runners (n = 18) and less-active controls (n = 15). One repetition maximum (1RM) was determined for squats, 45° leg presses and leg extensions. Subsequently three sets of 8–10 repetitions were performed at 80 % 1RM and blood collected over 72 hours. <em>PTGES2</em> and <em>ALOX15</em> expression changed over time in runners (<em>P</em> = 0.016, <em>P</em> = 0.007) but not controls (<em>P = 0.631, P = 0.539</em>). 5- and 15-HETE changed over time in runners (<em>P < 0.001, P = 0.022</em>), but not controls (<em>P = 0.457, P = 0.985</em>). 18-HEPE changed in runners and controls (<em>P < 0.001, P = 0.024</em>), 17-HDHA changed borderline in runners (<em>P = 0.076</em>). In conclusion, pro-inflammatory and inflammation-resolving lipid mediators may respond sooner and more robust in recreational runners than less-active controls after strenuous resistance exercise.</p></div>","PeriodicalId":94179,"journal":{"name":"Prostaglandins, leukotrienes, and essential fatty acids","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S095232782400036X/pdfft?md5=3cc9915dc54b4b1126fc97e1cdb713a2&pid=1-s2.0-S095232782400036X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inhibition of 15-prostaglandin dehydrogenase attenuates acetaminophen-induced liver injury via suppression of apoptosis in liver endothelial cells","authors":"Hiroaki Shimada , Akito Yokotobi , Nonoka Yamamoto , Mao Takada , Atsushi Kawase , Takeo Nakanishi , Masahiro Iwaki","doi":"10.1016/j.plefa.2024.102640","DOIUrl":"10.1016/j.plefa.2024.102640","url":null,"abstract":"<div><p>Hepatic microvascular disruption caused by injury to liver sinusoidal endothelial cells (LSECs) is an aggravating factor for drug-induced liver injury (DILI). It is suggested that prostaglandin E<sub>2</sub> (PGE<sub>2</sub>) may be able to attenuate LSEC injury. However, it is also known that 15-keto PGE<sub>2</sub>, a metabolite of PGE<sub>2</sub> produced by 15-prostaglandin dehydrogenase (15-PGDH) that is not a ligand of PGE<sub>2</sub> receptors, suppresses inflammatory acute liver injury as a ligand of peroxisome proliferator-activated receptor γ. In this study, we aimed to understand whether 15-PGDH activity is essential for preventing DILI by suppressing hepatic microvascular disruption in a mouse model of acetaminophen (APAP)-induced liver injury. To inhibit 15-PGDH activity prior to APAP-induced LSEC injury, we administered the 15-PGDH inhibitor, SW033291, 1 h before and 3 h after APAP treatment. We observed that LSEC injury preceded hepatocellular injury in APAP administered mice. Hepatic endogenous PGE<sub>2</sub> levels did not increase up till the initiation of LSEC injury but rather increased after hepatocellular injury. Moreover, hepatic 15-PGDH activity was downregulated in APAP-induced liver injury. The inhibition of 15-PGDH attenuated LSEC injury and subsequently hepatic injury by inhibiting apoptosis in APAP administered mice. Our <em>in vitro</em> studies also suggested that PGE<sub>2</sub> inhibited APAP-induced apoptosis via the EP4/PI3K pathway in endothelial cells. Therefore, a decrease in 15-PGDH activity would be beneficial for preventing APAP-induced liver injury by attenuating LSEC injury.</p></div>","PeriodicalId":94179,"journal":{"name":"Prostaglandins, leukotrienes, and essential fatty acids","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
William A Evans, Jazmine A Eccles-Miller, Eleanor Anderson, Hannah Farrell, William S Baldwin
{"title":"9-HODE and 9-HOTrE alter mitochondrial metabolism, increase triglycerides, and perturb fatty acid uptake and synthesis associated gene expression in HepG2 cells","authors":"William A Evans, Jazmine A Eccles-Miller, Eleanor Anderson, Hannah Farrell, William S Baldwin","doi":"10.1016/j.plefa.2024.102635","DOIUrl":"10.1016/j.plefa.2024.102635","url":null,"abstract":"<div><p>Non-Alcoholic Fatty Liver Disease (NAFLD) prevalence is rising and can lead to detrimental health outcomes such as Non-Alcoholic Steatohepatitis (NASH), cirrhosis, and cancer. Recent studies have indicated that Cytochrome P450 2B6 (CYP2B6) is an anti-obesity CYP in humans and mice. Cyp2b-null mice are diet-induced obese, and human CYP2B6-transgenic (hCYP2B6-Tg) mice reverse the obesity or diabetes progression, but with increased liver triglyceride accumulation in association with an increase of several oxylipins. Notably, 9-hydroxyoctadecadienoic acid (9-HODE) produced from linoleic acid (LA, 18:2, ω-6) is the most prominent of these and 9-hydroxyoctadecatrienoic acid (9-HOTrE) from alpha-linolenic acid (ALA, 18:3, ω-3) is the most preferentially produced when controlling for substrate concentrations in vitro. Transactivation assays indicate that 9-HODE and 9-HOTrE activate PPARα and PPARγ. In Seahorse assays performed in HepG2 cells, 9-HOTrE increased spare respiratory capacity, slightly decreased palmitate metabolism, and increased non-glycolytic acidification in a manner consistent with slightly increased glutamine utilization; however, 9-HODE exhibited no effect on metabolism. Both compounds increased triglyceride and pyruvate concentrations, most strongly by 9-HOTrE, consistent with increased spare respiratory capacity. qPCR analysis revealed several perturbations in fatty acid uptake and metabolism gene expression. 9-HODE increased expression of CD36, FASN, PPARγ, and FoxA2 that are involved in lipid uptake and production. 9-HOTrE decreased ANGPTL4 expression and increased FASN expression consistent with increased fatty acid uptake, fatty acid production, and AMPK activation. Our findings support the hypothesis that 9-HODE and 9-HOTrE promote steatosis, but through different mechanisms as 9-HODE is directly involved in fatty acid uptake and synthesis; 9-HOTrE weakly inhibits mitochondrial fatty acid metabolism while increasing glutamine use.</p></div>","PeriodicalId":94179,"journal":{"name":"Prostaglandins, leukotrienes, and essential fatty acids","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141978377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Abnormal expression of oxylipins and related synthesizing/signaling pathways in inflammatory bowel diseases","authors":"Yamina Ben-Mustapha , Raja Rekik , Mohamed K. Ben-Fradj , Meriem Serghini , Haifa Sanhaji , Melika Ben-Ahmed , Jalel Boubaker , Moncef Feki","doi":"10.1016/j.plefa.2024.102628","DOIUrl":"10.1016/j.plefa.2024.102628","url":null,"abstract":"<div><p>We investigated selected oxylipins and related synthesizing/signaling pathways in 28 patients with Crohn's disease (CD), 19 patients with ulcerative colitis (UC), and 39 controls. Plasma and mucosal PUFA/oxylipin profiles were analyzed by LC-MS/MS. mRNA expression of 5, 12 and 15-lipooxygenases, FPR2/ALXR, FFAR4/GPR120, annexin A1, and interleukin-10 were analyzed by qRT-PCR. Oxylipin profile and related metabolic pathways were altered in both CD and UC patients. The patterns were characterized by increased prostaglandins, leukotrienes, and lipoxins and overexpression of 5-lipoxygenase, FPR2/ALXR, annexin A1, and interleukin-10 genes, but decreased n-3 PUFAs and 18-hydroxyeisapentaenoic acid. The gene of 15-lipoxygenase was under-expressed mainly in UC patients. CD and UC are associated with unbalanced n-6 and n-3 derivatives and pro-inflammatory and anti-inflammatory/pro-resolving mediators favoring the former compounds. The findings suggest that oxylipins engage in the pathophysiology of the diseases. Targeting oxylipin's metabolic pathways would be a promising therapy for inflammatory bowel diseases.</p></div>","PeriodicalId":94179,"journal":{"name":"Prostaglandins, leukotrienes, and essential fatty acids","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141592505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Association of maternal blood and umbilical cord blood plasma fatty acid levels with the body size at birth of Japanese infants","authors":"Azusa Matsumoto , Terue Kawabata , Yasuo Kagawa , Kumiko Shoji , Fumiko Kimura , Teruo Miyazawa , Nozomi Tatsuta , Takahiro Arima , Nobuo Yaegashi , Kunihiko Nakai","doi":"10.1016/j.plefa.2024.102638","DOIUrl":"10.1016/j.plefa.2024.102638","url":null,"abstract":"<div><p>Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), mainly obtained from fish, have been implicated in fetal development. Because few studies have examined maternal and umbilical cord blood fatty acid levels and infant body size in Japan with a fish-eating culture, we examined differences in plasma fatty acid levels in pregnant women and infant size at birth. This study is a large birth cohort study of 1476 pairs of Japanese pregnant women and their infants. Maternal blood DHA levels and infant birth weight showed a positive relationship. However, analysis adjusted for gestational age did not reveal correlations. Negative relationships were found between cord blood DHA levels and infant body size, and between the difference in mother-to-child DHA levels and infant body size. Thus, the smaller the birth size, the higher the differences in umbilical cord blood DHA levels and mother-to-child DHA levels when considering gestational age.</p></div>","PeriodicalId":94179,"journal":{"name":"Prostaglandins, leukotrienes, and essential fatty acids","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nami Nishikiori , Megumi Watanabe , Tatsuya Sato , Araya Umetsu , Megumi Higashide , Masato Furuhashi , Hiroshi Ohguro
{"title":"Intraocular fatty acids induce reinforcement of barrier functions on the outer blood-retinal barrier","authors":"Nami Nishikiori , Megumi Watanabe , Tatsuya Sato , Araya Umetsu , Megumi Higashide , Masato Furuhashi , Hiroshi Ohguro","doi":"10.1016/j.plefa.2024.102637","DOIUrl":"10.1016/j.plefa.2024.102637","url":null,"abstract":"<div><p>The aim of the present study was to elucidate unknown effects of intraocular fatty acids (ioFAs) including palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), arachidonic acid (C20:4), eicosapentaenoic acid (EPA, C20:5) and docosahexaenoic acid (DHA, C22:6) on the outer blood-retinal barrier (oBRB). For this purpose, human retinal pigment epithelium cell line ARPE19 was subjected to analyses for evaluating the following biological phenotypes: (1) cell viability, (2) cellular metabolic functions, (3) barrier functions by trans-epithelial electrical resistance (TEER), and (4) expression of tight junction (TJ) molecules. In the presence of 100 nM ioFAs, no significant effects on cell viability of ARPE19 cells was observed. While treatment with EPA or DHA tended to reduce non-mitochondrial oxygen consumption, most indices in mitochondrial functions were not markedly affected by treatment with ioFAs in ARPE19 cells. On the other hand, ioFAs except for palmitic acid and stearic acid significantly increased basal extracellular acidification rates, suggesting activated glycolysis or increased lactate production. Interestingly, TEER values of planar ARPE19 monolayer were significantly increased by treatment any ioFAs. Consistently, gene expression levels of TJ proteins were increased by treatment with ioFAs. Collectively, the findings presented herein suggest that ioFAs may contribute to reinforcement of barrier functions of the oBRB albeit there are some differences in biological effects depending on the type of ioFAs.</p></div>","PeriodicalId":94179,"journal":{"name":"Prostaglandins, leukotrienes, and essential fatty acids","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141918450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sho Watanabe , Felipe Da Costa Souza , Ibuki Kusumoto , Qing Shen , Nitin Nitin , Pamela J. Lein , Ameer Y. Taha
{"title":"Intraperitoneally injected d11-11(12)-epoxyeicosatrienoic acid is rapidly incorporated and esterified within rat plasma and peripheral tissues but not the brain","authors":"Sho Watanabe , Felipe Da Costa Souza , Ibuki Kusumoto , Qing Shen , Nitin Nitin , Pamela J. Lein , Ameer Y. Taha","doi":"10.1016/j.plefa.2024.102622","DOIUrl":"10.1016/j.plefa.2024.102622","url":null,"abstract":"<div><p>Epoxyeicosatrienoic acids (EpETrEs) are bioactive lipid mediators of arachidonic acid cytochrome P450 oxidation. In vivo, the free (unbound) form of EpETrEs regulate multiple processes including blood flow, angiogenesis and inflammation resolution. Free EpETrEs are thought to rapidly degrade via soluble epoxide hydrolase (sEH); yet, in many tissues, the majority of EpETrEs are esterified to complex lipids (e.g. phospholipids) suggesting that esterification may play a major role in regulating free, bioactive EpETrE levels. This hypothesis was tested by quantifying the metabolism of intraperitoneally injected free d11-11(12)-Epoxyeicosatrienoic acid (d11-11(12)-EpETrE) in male and female rats. Plasma and tissues (liver, adipose and brain) were obtained 3 to 4 min later and assayed for d11-11(12)-EpETrE and its sEH metabolite, d11-11,12-dihydroxyeicosatrienoic acid (d11-11,12-diHETrE) in both the free and esterified lipid fractions. In both males and females, the majority of injected tracer was recovered in liver followed by plasma and adipose. No tracer was detected in the brain, indicating that brain levels are maintained by endogenous synthesis from precursor fatty acids. In plasma, liver, and adipose, the majority (>54 %) of d11-11(12)-EpETrE was found esterified to phospholipids or neutral lipids (triglycerides and cholesteryl esters). sEH-derived d11-11,12-diHETrE was not detected in plasma or tissues, suggesting negligible conversion within the 3–4 min period post tracer injection. This study shows that esterification is the main pathway regulating free 11(12)-EpETrE levels in vivo.</p></div>","PeriodicalId":94179,"journal":{"name":"Prostaglandins, leukotrienes, and essential fatty acids","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141036543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}