{"title":"Vegetal memory through the lens of transcriptomic changes - recent progress and future practical prospects for exploiting plant transcriptional memory.","authors":"Dóra Farkas, Judit Dobránszki","doi":"10.1080/15592324.2024.2383515","DOIUrl":"10.1080/15592324.2024.2383515","url":null,"abstract":"<p><p>Plant memory plays an important role in the efficient and rapid acclimation to a swiftly changing environment. In addition, since plant memory can be inherited, it is also of adaptive and evolutionary importance. The ability of a plant to store, retain, retrieve and delete information on acquired experience is based on cellular, biochemical and molecular networks in the plants. This review offers an up-to-date overview on the formation, types, checkpoints of plant memory based on our current knowledge and focusing on its transcriptional aspects, the transcriptional memory. Roles of long and small non-coding RNAs are summarized in the regulation, formation and the cooperation between the different layers of the plant memory, i.e. in the establishment of epigenetic changes associated with memory formation in plants. The RNA interference mechanisms at the RNA and DNA level and the interplays between them are also presented. Furthermore, this review gives an insight of how exploitation of plant transcriptional memory may provide new opportunities for elaborating promising cost-efficient, and effective strategies to cope with the ever-changing environmental perturbations, caused by climate change. The potentials of plant memory-based methods, such as crop priming, cross acclimatization, memory modification by miRNAs and associative use of plant memory, in the future's agriculture are also discussed.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2383515"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11290777/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141794427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Association of the electrical parameters and photosynthetic characteristics of the tea tree manifests its response to simulated karst drought.","authors":"Peng Wei, Haitao Li, Yanyou Wu, Cheng Zhang","doi":"10.1080/15592324.2024.2359258","DOIUrl":"10.1080/15592324.2024.2359258","url":null,"abstract":"<p><p>Tea plantations in Karst regions suffer from the serious effects of frequent temporary karst droughts, leading to a decline in tea production and quality in the region. The close relationship between growth and electrical parameters of plants, including physiological capacitance, resistance and impedance, can be used to accurately monitor their plant water status online, quickly, accurately, timely and nondestructively. In this study, three tea tree cultivars of Zhonghuang No.2 (ZH), Wuniuzao (WNZ), and Longjing 43 (LJ) with different levels of drought resistance were selected as experimental materials, and experiments were carried out under controlled conditions according to control (soil water content of 40-45%, D0), (keeping D0 no watering to 5 days, D5), (keeping D0 no watering to 10 days, D10), (the first day after D10 is rehydrated to D0 is regarded as R1) and (the fifth day after D10 rehydration to D0 is regarded as R5), to determine intracellular water metabolism and nutrient translocation characteristics based on intrinsic electrical parameters. The photosynthetic characteristics and chlorophyll fluorescence parameters were also determined to investigate the response of water metabolism to simulated karst drought in the three tea tree cultivars. The results indicated that the water metabolism patterns responded to environmental water changes with a medium water-holding capacity, medium water transport rate, and low water-use efficiency, and the nutrient patterns in those tea tree varieties demonstrated with a high nutrient flux per unit area, low nutrient transfer rate, and high nutrient transport capacity. After rehydration, only the electrical characteristics of WNZ returned to the D0 levels, but the net photosynthetic rate of all varieties returned to or even exceeded the D0 levels. The chlorophyll fluorescence parameters could not be used to characterize the recoverability of metabolism in tea trees. The electrical characteristics quickly reflected the response of the water metabolism in plants to environmental changes, and the fusion of electrical characteristics and photosynthetic characteristics was able to more quickly, accurately, and comprehensively reflect the response of water metabolism to temporary karst drought.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2359258"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11152107/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141201295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Growth and physiological response of Yulu <i>Hippophae rhamnoides</i> to drought stress and its omics analysis.","authors":"Haipeng Chen, Xiaolin Chen, Xiaogang Li, Xin Lin, Lihua Yue, Chunhai Liu, Yuling Li","doi":"10.1080/15592324.2024.2439256","DOIUrl":"10.1080/15592324.2024.2439256","url":null,"abstract":"<p><p><i>Hippophae rhamnoides (H. rhamnoides</i>) is the primary tree species known for its ecological and economic benefits in arid and semi-arid regions. Understanding the response of <i>H. rhamnoides</i> roots to drought stress is essential for promoting the development of varieties. One-year-old Yulu <i>H. rhamnoides</i> was utilized as the experimental material, and three water gradients were established: control (CK), moderate (T1) and severe (T2), over a period of 120 days. The phenotypic traits and physiological indies were assessed and analyzed, while the roots were subjected by RNA-Seq transcriptome and Tandem Mass Tags (TMT) proteome analysis. Drought stress significantly reduced the plant height, ground diameter, root biomass and superoxide dismutase activity; however, the main root length increased. In comparison with CK, a total of 5789 and 5594 differential genes, as well as 63 and 1012 differential proteins, were identified in T1 and T2, respectively. The combined analysis of transcriptome and proteome showed that the number of differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) associated with T1, T2 and CK was 28 and 126, respectively, with 7 and 36 genes achieving effective KEGG annotation. In T1 and T2, the differential genes were significantly enriched in the plant hormone signal transduction pathway, but there was no significant enrichment in the protein expression profile. In T2, 38 plant hormone signal transduction function genes and 10 peroxisome related genes were identified. With the increase of drought stress, the combined expression of DEGs and DEPs increased. Yulu <i>H. rhamnoides</i> may allocate more resources toward CAT while simultaneously decreasing SOD and POD to mitigate the oxidative stress induced by drought. Furthermore, the molecular mechanisms underlying plant hormone signal transduction and peroxisome-related genes in the roots of <i>H. rhamnoides</i> were discussed in greater detail.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2439256"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633206/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142804028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The role of indigenous knowledge in advancing the therapeutic use of medicinal plants: challenges and opportunities.","authors":"Esther Ugo Alum","doi":"10.1080/15592324.2024.2439255","DOIUrl":"10.1080/15592324.2024.2439255","url":null,"abstract":"","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2439255"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633201/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142804040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of fluorescent tags and activity status on the membrane localization of ROP GTPases.","authors":"Jingtong Ruan, Zihan Yin, Peishan Yi","doi":"10.1080/15592324.2024.2306790","DOIUrl":"10.1080/15592324.2024.2306790","url":null,"abstract":"<p><p>Plant-specific Rho-type GTPases (ROPs) are master regulators of cell polarity and development. Over the past 30 years, their localization and dynamics have been largely examined with fluorescent proteins fused at the amino terminus without investigating their impact on protein function. The moss <i>Physcomitrium patens</i> genome encodes four <i>rop</i> genes. In this study, we introduce a fluorescent tag at the endogenous amino terminus of ROP4 in wild-type and <i>rop1,2,3</i> triple mutant via homologous recombination and demonstrate that the fluorescent tag severely impairs ROP4 function and inhibits its localization on the plasma membrane. This phenotype is exacerbated in mutants lacking ROP-related GTPase-activating proteins. By comparing the localization of nonfunctional and functional ROP4 fusion reporters, we provide insight into the mechanism that governs the membrane association of ROPs.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2306790"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10813580/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139547896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A Novoplansky, G M Souza, E D Brenner, S C Bhatla, E Van Volkenburgh
{"title":"Exploring the complex information processes underlying plant behavior.","authors":"A Novoplansky, G M Souza, E D Brenner, S C Bhatla, E Van Volkenburgh","doi":"10.1080/15592324.2024.2411913","DOIUrl":"10.1080/15592324.2024.2411913","url":null,"abstract":"<p><p>Newly discovered plant behaviors, linked to historical observations, contemporary technologies, and emerging knowledge of signaling mechanisms, argue that plants utilize complex information processing systems. Plants are goal-oriented in an evolutionary and physiological sense; they demonstrate agency and learning. While most studies on plant plasticity, learning, and memory deal with the responsiveness of individual plants to resource availability and biotic stresses, adaptive information is often perceived from and coordinated with neighboring plants, while competition occurs for limited resources. Based on existing knowledge, technologies, and sustainability principles, climate-smart agricultural practices are now being adopted to enhance crop resilience and productivity. A deeper understanding of the dynamics of plant behavior offers a rich palette of potential amelioration strategies for improving the productivity and health of natural and agricultural ecosystems.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2411913"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11469436/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142396491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Urban environment decreases pollinator availability, fertility, and prolongs anthesis in the field bindweed (<i>Convolvulus arvensis</i> Linnaeus, 1753).","authors":"Pavol Prokop","doi":"10.1080/15592324.2024.2325225","DOIUrl":"10.1080/15592324.2024.2325225","url":null,"abstract":"<p><p>Urbanization alters the natural environment, with broad negative impacts on living organisms. Urbanization can also disrupt plant-pollinator networks by reducing the abundance and diversity of invertebrates. Firstly, I investigated whether the field bindweed (<i>Convolvulus arvensis</i>) is an obligatory entomophilous plant because previous reports were ambiguous. Secondly, I investigated how the obligatory entomophilous plant, field bindweed, responds to urbanization by comparing the flowering duration (anthesis) and the reproductive success of field bindweeds in urban and rural populations. Unlike cross-pollinated flowers and controls, flowers experimentally prevented from pollination and self-pollinated flowers did not produce seeds, suggesting that the field bindweed is self-incompatible and obligatory entomophilous. The abundance of urban pollinators was 5-6 times lower than the abundance of rural pollinators, and flies (Diptera), beetles (Coleoptera) and moths (Lepidoptera) were significantly more negatively influenced by the urban environment than hymenopterans (Hymenoptera). Urban plants showed significantly longer anthesis duration and lower reproductive success than rural plants. Illuminance and low pollinator abundance were negatively associated with the duration of the anthesis, but relative humidity did not affect the anthesis. Prolonged duration of the anthesis may be an adaptation to pollinator scarcity because more prolonged flowering increases the likelihood of pollination. Future research should unravel whether the longer anthesis of urban flowers is determined by behavioral plasticity or by the evolutionary selection of plants with a genetically determined longer anthesis.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2325225"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936644/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140051386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shengxiao Wang, Chenyue Wang, Jun Zhang, Kan Jiang, Fang Nian
{"title":"Allelopathy and potential allelochemicals of <i>Ligularia sagitta</i> as an invasive plant.","authors":"Shengxiao Wang, Chenyue Wang, Jun Zhang, Kan Jiang, Fang Nian","doi":"10.1080/15592324.2024.2335025","DOIUrl":"https://doi.org/10.1080/15592324.2024.2335025","url":null,"abstract":"<p><p>Allelopathy is the main chemical means in the invasion process of exotic plants and one of the key factors in grassland degradation. In this experiment, we investigated the effects of ethyl acetate phase extract (EAE), n-butanol phase extract (BE) and aqueous phase extract (AE) from the aboveground (stems and leaves) and roots of <i>Ligularia sagitta</i> on seed germination and seedling growth of four <i>Gramineae</i> forages (<i>Poa pratensis</i> L. <i>Festuca ovina</i> L. <i>Elymus nutans</i> Griseb. <i>Agropyron cristatum</i> (L.) Gaertn.) in their sympatric domains and one <i>Legosuminae</i> forage (<i>Medicago sativa</i> L.). The chemical components in each phase extract of <i>L. sagitta</i> were determined with UHPLC-MS/MS non-targeted metabolomics, and the differential compounds were screened using Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA). Within a set concentration range, EAE significantly inhibited seed germination and seedling growth of four <i>Gramineae</i> forages. BE and AE acted mainly in the seedling growth stage and did not significantly inhibit forage seed germination. <i>P. pratensis</i> was most sensitive to <i>L. sagitta</i> extracts; at 2.0 mg/mL of EAE from roots, germination energy and germination rate of <i>P. pratensis</i> seeds were 0. <i>L. sagitta</i> extracts inhibited the growth of <i>M. sativa</i> seedlings and did not inhibit its seed germination. A total of 904 compounds were identified with UHPLC-MS/MS, among which 31, 64, 81 and 66 metabolites displayed different accumulation patterns in the four comparison groups (R.EAE vs. R.BE, R.EAE vs. R.AE, SL.EAE vs. SL.BE, SL.EAE vs. SL.AE), respectively. In particular, 9 compounds were found to be common up-regulated differential metabolites in the four comparison groups and were enriched in EAE. Additionally, N,N-dimethylaniline, Caffeic acid, 4-Hydroxybenzoic acid, 4-Hydroxybenzaldehyde and cis-9-Octadecenoic acid as potential allelochemicals in <i>L. sagitta</i>. The results of this study support efforts at finding alternative control plants for the restoration of poisonous grass-type degraded grasslands.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2335025"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057658/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140871819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Harsh environmental conditions promote cooperative behavior in an epiphytic fern.","authors":"Kahurangi Cronin, Ian Hutton, K C Burns","doi":"10.1080/15592324.2024.2335453","DOIUrl":"10.1080/15592324.2024.2335453","url":null,"abstract":"<p><p>Harsh, unpredictable environments are known to favor cooperative groups in animals. Whether plants exhibit similar relationships is unknown. Staghorn ferns (<i>Platycerium bifurcatum</i>, Polypodiaceae) are epiphytes that form cooperative groups which build communal water and nutrient 'nests' at the tops of trees, a habitat characterized by water and nutrient stress. We conducted field observations to test whether staghorn ferns continue to live in large, reproductively active groups after they become dislodged from the canopy and fall to the forest floor, where they are less limited by water and nutrient deprivation. To rule out the potentially confounding effects of light limitation on the forest floor, we also conducted a multi-year glasshouse experiment where we transplanted individual plants into soil and onto vertically oriented boards under standardized light conditions. Results from field observations showed that dislodged colonies formed smaller groups that reproduced less than epiphytic colonies. Results from the glasshouse experiment showed that even when growing in full sun, terrestrial individuals tended to remain solitary, while epiphytic individuals tended to recruit new individuals into colonies. Results also showed that plants growing in potting soil and exposed to full sunlight sporulated more heavily than plants growing epiphytically. However, localities that are characterized by both elevated soil and light resources are generally not available to staghorn ferns in the wild, perhaps with the exception of large, epiphytic colonies with well-developed nests at the top of tree canopies. Overall results indicate that the harsh environmental conditions at the tops of trees trigger the formation of colonies in staghorn ferns, similarly to group living animals.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2335453"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10984116/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140330466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigating the mechanism of chloroplast singlet oxygen signaling in the <i>Arabidopsis thaliana accelerated cell death 2</i> mutant.","authors":"Matthew D Lemke, Alexa N Abate, Jesse D Woodson","doi":"10.1080/15592324.2024.2347783","DOIUrl":"10.1080/15592324.2024.2347783","url":null,"abstract":"<p><p>As sessile organisms, plants have evolved complex signaling mechanisms to sense stress and acclimate. This includes the use of reactive oxygen species (ROS) generated during dysfunctional photosynthesis to initiate signaling. One such ROS, singlet oxygen (<sup>1</sup>O<sub>2</sub>), can trigger retrograde signaling, chloroplast degradation, and programmed cell death. However, the signaling mechanisms are largely unknown. Several proteins (e.g. PUB4, OXI1, EX1) are proposed to play signaling roles across three <i>Arabidopsis thaliana</i> mutants that conditionally accumulate chloroplast <sup>1</sup>O<sub>2</sub> (<i>fluorescent in blue light</i> (<i>flu</i>), <i>chlorina 1</i> (<i>ch1</i>), and <i>plastid ferrochelatase 2</i> (<i>fc2</i>)). We previously demonstrated that these mutants reveal at least two chloroplast <sup>1</sup>O<sub>2</sub> signaling pathways (represented by <i>flu</i> and <i>fc2</i>/<i>ch1</i>). Here, we test if the <sup>1</sup>O<sub>2</sub>-accumulating lesion mimic mutant, <i>accelerated cell death 2</i> (<i>acd2</i>), also utilizes these pathways. The <i>pub4-6</i> allele delayed lesion formation in <i>acd2</i> and restored photosynthetic efficiency and biomass. Conversely, an <i>oxi1</i> mutation had no measurable effect on these phenotypes. <i>acd2</i> mutants were not sensitive to excess light (EL) stress, yet <i>pub4-6</i> and <i>oxi1</i> both conferred EL tolerance within the <i>acd2</i> background, suggesting that EL-induced <sup>1</sup>O<sub>2</sub> signaling pathways are independent from spontaneous lesion formation. Thus, <sup>1</sup>O<sub>2</sub> signaling in <i>acd2</i> may represent a third (partially overlapping) pathway to control cellular degradation.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2347783"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11073415/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140872866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}