npj agingPub Date : 2015-09-28DOI: 10.1038/npjamd.2015.1
Alaattin Kaya, Siming Ma, Brian Wasko, Mitchell Lee, Matt Kaeberlein, Vadim N Gladyshev
{"title":"Defining molecular basis for longevity traits in natural yeast isolates","authors":"Alaattin Kaya, Siming Ma, Brian Wasko, Mitchell Lee, Matt Kaeberlein, Vadim N Gladyshev","doi":"10.1038/npjamd.2015.1","DOIUrl":"10.1038/npjamd.2015.1","url":null,"abstract":"The budding yeast has served as a useful model organism in aging studies, leading to the identification of genetic determinants of longevity, many of which are conserved in higher eukaryotes. However, factors that promote longevity in a laboratory setting often have severe fitness disadvantages in the wild. To obtain an unbiased view on longevity regulation, we analyzed how a replicative lifespan is shaped by transcriptional, translational, metabolic, and morphological factors across 22 wild-type Saccharomyces cerevisiae isolates. We observed significant differences in lifespan across these strains and found that their longevity is strongly associated with up-regulation of oxidative phosphorylation and respiration and down-regulation of amino- acid and nitrogen compound biosynthesis. As calorie restriction and TOR signaling also extend the lifespan by adjusting many of the identified pathways, the data suggest that the natural plasticity of yeast lifespan is shaped by the processes that not only do not impose cost on fitness, but also are amenable to dietary intervention. A new study pinpoints a consistent set of genes and pathways underlying variations in yeast lifespan. Vadim Gladyshev at Harvard Medical School and co-workers analyzed 22 Saccharomyces cerevisiae yeast strains with diverse lifespans and habitats, looking to identify genomic signatures associated with natural variations in longevity. They observed a number of factors that characterized the longest-lived strains, including the upregulation of aerobic respiration, and found that interactions between genes and the environment were key. They also showed that factors associated with increased longevity in yeast strains do not necessarily degrade the fitness of those strains in the wild, and that longevity can be influenced through diet. The study thus paints a more complete picture of how environmental factors trigger changes—some hard–wired in the genome—that have real consequences on aging and longevity.","PeriodicalId":94160,"journal":{"name":"npj aging","volume":"1 1","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2015-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/npjamd.2015.1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57528183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
npj agingPub Date : 2015-09-28DOI: 10.1038/npjamd.2015.6
Nia Fogelman, Turhan Canli
{"title":"‘Purpose in Life’ as a psychosocial resource in healthy aging: an examination of cortisol baseline levels and response to the Trier Social Stress Test","authors":"Nia Fogelman, Turhan Canli","doi":"10.1038/npjamd.2015.6","DOIUrl":"10.1038/npjamd.2015.6","url":null,"abstract":"‘Purpose in Life’ (Purpose) is associated with healthy aging, but it is unknown whether this association is causal. Conceptualizing Purpose as a form of psychosocial resource, one mechanism promoting health could be the regulation of stress hormones. To test this hypothesis, we recruited 44 older community-dwelling adults to examine the association between Purpose and cortisol at baseline, in response to, and recovery from, an acute social laboratory stressor. Purpose did not predict cortisol baseline or reactivity, but did predict a faster recovery to pre-stress baseline levels. The health benefits of Purpose in aging may therefore reflect the combination of a normal stress response, which serves an adaptive benefit of allostasis, with an accelerated stress recovery, which reduces the burden of allostatic load. This model should be tested in future studies using larger samples, multiple related constructs, and longitudinal designs that include participants’ health records.","PeriodicalId":94160,"journal":{"name":"npj aging","volume":"1 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2015-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/npjamd.2015.6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35181847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
npj agingPub Date : 2015-09-28DOI: 10.1038/npjamd.2015.3
Mark P Mattson
{"title":"Late-onset dementia: a mosaic of prototypical pathologies modifiable by diet and lifestyle","authors":"Mark P Mattson","doi":"10.1038/npjamd.2015.3","DOIUrl":"10.1038/npjamd.2015.3","url":null,"abstract":"Idiopathic late-onset dementia (ILOD) describes impairments of memory, reasoning and/or social abilities in the elderly that compromise their daily functioning. Dementia occurs in several major prototypical neurodegenerative disorders that are currently defined by neuropathological criteria, most notably Alzheimer’s disease (AD), Lewy body dementia (LBD), frontotemporal dementia (FTD) and hippocampal sclerosis of aging (HSA). However, people who die with ILOD commonly exhibit mixed pathologies that vary within and between brain regions. Indeed, many patients diagnosed with probable AD exhibit only modest amounts of disease-defining amyloid β-peptide plaques and p-Tau tangles, and may have features of FTD (TDP-43 inclusions), Parkinson’s disease (α-synuclein accumulation), HSA and vascular lesions. Here I argue that this ‘mosaic neuropathological landscape’ is the result of commonalities in aging-related processes that render neurons vulnerable to the entire spectrum of ILODs. In this view, all ILODs involve deficits in neuronal energy metabolism, neurotrophic signaling and adaptive cellular stress responses, and associated dysregulation of neuronal calcium handling and autophagy. Although this mosaic of neuropathologies and underlying mechanisms poses major hurdles for development of disease-specific therapeutic interventions, it also suggests that certain interventions would be beneficial for all ILODs. Indeed, emerging evidence suggests that the brain can be protected against ILOD by lifelong intermittent physiological challenges including exercise, energy restriction and intellectual endeavors; these interventions enhance cellular stress resistance and facilitate neuroplasticity. There is also therapeutic potential for interventions that bolster neuronal bioenergetics and/or activate one or more adaptive cellular stress response pathways in brain cells. A wider appreciation that all ILODs share age-related cellular and molecular alterations upstream of aggregated protein lesions, and that these upstream events can be mitigated, may lead to implementation of novel intervention strategies aimed at reversing the rising tide of ILODs.","PeriodicalId":94160,"journal":{"name":"npj aging","volume":"1 1","pages":"1-11"},"PeriodicalIF":0.0,"publicationDate":"2015-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/npjamd.2015.3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35114795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}